These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31528202)

  • 1. Engineered
    Li Y; Hu J; Qu C; Chen L; Guo X; Fu H; Wang J
    Biotechnol Biofuels; 2019; 12():214. PubMed ID: 31528202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The redox-sensing transcriptional repressor Rex is important for regulating the products distribution in Thermoanaerobacterium aotearoense SCUT27.
    Qu C; Chen L; Li Y; Fu H; Wang J
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5605-5617. PubMed ID: 32248440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting the Type I-B CRISPR Genome Editing System in Thermoanaerobacterium aotearoense SCUT27 and Engineering the Strain for Enhanced Ethanol Production.
    Dai K; Fu H; Guo X; Qu C; Lan Y; Wang J
    Appl Environ Microbiol; 2022 Aug; 88(15):e0075122. PubMed ID: 35862665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Thermoanaerobacterium aotearoense SCUT27 with argR knockout for enhanced ethanol production from lignocellulosic hydrolysates.
    Qu C; Chen L; Fu H; Wang J
    Bioresour Technol; 2020 Aug; 310():123435. PubMed ID: 32361198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and Its Effect on Metabolism.
    Lo J; Zheng T; Olson DG; Ruppertsberger N; Tripathi SA; Tian L; Guss AM; Lynd LR
    J Bacteriol; 2015 Sep; 197(18):2920-9. PubMed ID: 26124241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity.
    Yang X; Lai Z; Lai C; Zhu M; Li S; Wang J; Wang X
    Biotechnol Biofuels; 2013 Aug; 6(1):124. PubMed ID: 23985133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cofactor engineering in Thermoanaerobacterium aotearoense SCUT27 for maximizing ethanol yield and revealing an enzyme complex with high ferredoxin-NAD
    Dai K; Qu C; Li X; Lan Y; Fu H; Wang J
    Bioresour Technol; 2024 Jun; 402():130784. PubMed ID: 38701976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Thermoanaerobacterium aotearoense strain SCUT27 for biofuels production from sucrose and molasses.
    Dai K; Qu C; Feng J; Lan Y; Fu H; Wang J
    Biotechnol Biofuels Bioprod; 2023 Oct; 16(1):155. PubMed ID: 37865803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture.
    Lai Z; Zhu M; Yang X; Wang J; Li S
    Biotechnol Biofuels; 2014; 7(1):119. PubMed ID: 25184001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct hydrogen production from dilute-acid pretreated sugarcane bagasse hydrolysate using the newly isolated Thermoanaerobacterium thermosaccharolyticum MJ1.
    Hu BB; Zhu MJ
    Microb Cell Fact; 2017 May; 16(1):77. PubMed ID: 28468624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria.
    Cao GL; Zhao L; Wang AJ; Wang ZY; Ren NQ
    Biotechnol Biofuels; 2014; 7():82. PubMed ID: 24920960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Draft Genome Sequence of an Anaerobic, Thermophilic Bacterium, Thermoanaerobacterium aotearoense SCUT27, Isolated from a Hot Spring in China.
    Ai H; Zhang J; Yang M; Yu P; Li S; Zhu M; Dong H; Wang S; Wang J
    Genome Announc; 2014 Feb; 2(1):. PubMed ID: 24526632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon Catabolite Repression and the Related Genes of ccpA, ptsH and hprK in Thermoanaerobacterium aotearoense.
    Zhu M; Lu Y; Wang J; Li S; Wang X
    PLoS One; 2015; 10(11):e0142121. PubMed ID: 26540271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into Flavin-based Electron Bifurcation via the NADH-dependent Reduced Ferredoxin:NADP Oxidoreductase Structure.
    Demmer JK; Huang H; Wang S; Demmer U; Thauer RK; Ermler U
    J Biol Chem; 2015 Sep; 290(36):21985-95. PubMed ID: 26139605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering electron metabolism to increase ethanol production in Clostridium thermocellum.
    Lo J; Olson DG; Murphy SJ; Tian L; Hon S; Lanahan A; Guss AM; Lynd LR
    Metab Eng; 2017 Jan; 39():71-79. PubMed ID: 27989806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Recombinant β-Mannanase from
    Zhu M; Zhang L; Yang F; Cha Y; Li S; Zhuo M; Huang S; Li J
    J Agric Food Chem; 2020 Jan; 68(3):818-825. PubMed ID: 31845578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Expression and Characterization of a Multidomain Xylanase from Thermoanaerobacterium aotearoense SCUT27 in Bacillus subtilis.
    Huang X; Li Z; Du C; Wang J; Li S
    J Agric Food Chem; 2015 Jul; 63(28):6430-9. PubMed ID: 26132889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the Clostridium thermocellum AdhE, NfnAB, ferredoxin and Pfor proteins for their ability to support high titer ethanol production in Thermoanaerobacterium saccharolyticum.
    Cui J; Olson DG; Lynd LR
    Metab Eng; 2019 Jan; 51():32-42. PubMed ID: 30218716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High efficiency hydrogen production from glucose/xylose by the ldh-deleted Thermoanaerobacterium strain.
    Li S; Lai C; Cai Y; Yang X; Yang S; Zhu M; Wang J; Wang X
    Bioresour Technol; 2010 Nov; 101(22):8718-24. PubMed ID: 20637604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expressing the
    Hon S; Holwerda EK; Worthen RS; Maloney MI; Tian L; Cui J; Lin PP; Lynd LR; Olson DG
    Biotechnol Biofuels; 2018; 11():242. PubMed ID: 30202437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.