These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 31528204)

  • 1. Identification of candidate genes controlling oil content by combination of genome-wide association and transcriptome analysis in the oilseed crop
    Xiao Z; Zhang C; Tang F; Yang B; Zhang L; Liu J; Huo Q; Wang S; Li S; Wei L; Du H; Qu C; Lu K; Li J; Li N
    Biotechnol Biofuels; 2019; 12():216. PubMed ID: 31528204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality.
    Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP
    BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus.
    Liu S; Fan C; Li J; Cai G; Yang Q; Wu J; Yi X; Zhang C; Zhou Y
    Theor Appl Genet; 2016 Jun; 129(6):1203-15. PubMed ID: 26912143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes.
    Xu HM; Kong XD; Chen F; Huang JX; Lou XY; Zhao JY
    BMC Genomics; 2015 Oct; 16():858. PubMed ID: 26499887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Brassica napus fatty acid exporter FAX1-1 contributes to biological yield, seed oil content, and oil quality.
    Xiao Z; Tang F; Zhang L; Li S; Wang S; Huo Q; Yang B; Zhang C; Wang D; Li Q; Wei L; Guo T; Qu C; Lu K; Zhang Y; Guo L; Li J; Li N
    Biotechnol Biofuels; 2021 Sep; 14(1):190. PubMed ID: 34587987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of the genetic architecture of three seed-quality traits and consequences for breeding in Brassica napus.
    Wang B; Wu Z; Li Z; Zhang Q; Hu J; Xiao Y; Cai D; Wu J; King GJ; Li H; Liu K
    Plant Biotechnol J; 2018 Jul; 16(7):1336-1348. PubMed ID: 29265559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional association analysis coupled with transcriptome analyses reveal candidate genes affecting seed oil accumulation in Brassica napus.
    Yao M; Guan M; Yang Q; Huang L; Xiong X; Jan HU; Voss-Fels KP; Werner CR; He X; Qian W; Snowdon RJ; Guan C; Hua W; Qian L
    Theor Appl Genet; 2021 May; 134(5):1545-1555. PubMed ID: 33677638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide association study reveals a patatin-like lipase relating to the reduction of seed oil content in Brassica napus.
    Wang H; Wang Q; Pak H; Yan T; Chen M; Chen X; Wu D; Jiang L
    BMC Plant Biol; 2021 Jan; 21(1):6. PubMed ID: 33407143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide association study identifies candidate genes and favorable haplotypes for seed yield in
    Liu H; Zou M; Zhang B; Yang X; Yuan P; Ding G; Xu F; Shi L
    Mol Breed; 2022 Oct; 42(10):61. PubMed ID: 37313016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in
    Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine mapping and candidate gene analysis of a major QTL for oil content in the seed of Brassica napus.
    Zhao Q; Wu J; Lan L; Shahid M; Qasim MU; Yu K; Zhang C; Fan C; Zhou Y
    Theor Appl Genet; 2023 Nov; 136(12):256. PubMed ID: 38010528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-omics analysis dissects the genetic architecture of seed coat content in Brassica napus.
    Zhang Y; Zhang H; Zhao H; Xia Y; Zheng X; Fan R; Tan Z; Duan C; Fu Y; Li L; Ye J; Tang S; Hu H; Xie W; Yao X; Guo L
    Genome Biol; 2022 Mar; 23(1):86. PubMed ID: 35346318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Association Analysis Combined With Quantitative Trait Loci Mapping and Dynamic Transcriptome Unveil the Genetic Control of Seed Oil Content in
    Zhao C; Xie M; Liang L; Yang L; Han H; Qin X; Zhao J; Hou Y; Dai W; Du C; Xiang Y; Liu S; Huang X
    Front Plant Sci; 2022; 13():929197. PubMed ID: 35845656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.).
    Zhou H; Xiao X; Asjad A; Han D; Zheng W; Xiao G; Huang Y; Zhou Q
    BMC Plant Biol; 2022 Mar; 22(1):130. PubMed ID: 35313826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of candidate genes regulating seed oil content by QTL mapping and transcriptome sequencing in
    Xiao Z; Zhang C; Qu C; Wei L; Zhang L; Yang B; Lu K; Li J
    Front Plant Sci; 2022; 13():1067121. PubMed ID: 36570918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds.
    Lu S; Sturtevant D; Aziz M; Jin C; Li Q; Chapman KD; Guo L
    Plant J; 2018 Jun; 94(6):915-932. PubMed ID: 29752761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide Identification and Comparative Expression Profile Analysis of the Long-Chain Acyl-CoA synthetase (LACS) Gene Family in Two Different Oil Content Cultivars of Brassica napus.
    Xiao Z; Li N; Wang S; Sun J; Zhang L; Zhang C; Yang H; Zhao H; Yang B; Wei L; Du H; Qu C; Lu K; Li J
    Biochem Genet; 2019 Dec; 57(6):781-800. PubMed ID: 31011871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome and Regional Association Analyses Reveal the Effects of Oleosin Genes on the Accumulation of Oil Content in
    Jia Y; Yao M; He X; Xiong X; Guan M; Liu Z; Guan C; Qian L
    Plants (Basel); 2022 Nov; 11(22):. PubMed ID: 36432869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus).
    Hasan M; Friedt W; Pons-Kühnemann J; Freitag NM; Link K; Snowdon RJ
    Theor Appl Genet; 2008 May; 116(8):1035-49. PubMed ID: 18322671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus.
    Ding LN; Gu SL; Zhu FG; Ma ZY; Li J; Li M; Wang Z; Tan XL
    BMC Plant Biol; 2020 Jan; 20(1):21. PubMed ID: 31931712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.