These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 31528205)
21. Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688. Dijkman WP; Fraaije MW Appl Environ Microbiol; 2014 Feb; 80(3):1082-90. PubMed ID: 24271187 [TBL] [Abstract][Full Text] [Related]
22. Recent Advances in the Development of 5-Hydroxymethylfurfural Oxidation with Base (Nonprecious)-Metal-Containing Catalysts. Pal P; Saravanamurugan S ChemSusChem; 2019 Jan; 12(1):145-163. PubMed ID: 30362263 [TBL] [Abstract][Full Text] [Related]
23. Electrochemical Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid (FDCA) in Acidic Media Enabling Spontaneous FDCA Separation. Kubota SR; Choi KS ChemSusChem; 2018 Jul; 11(13):2138-2145. PubMed ID: 29905406 [TBL] [Abstract][Full Text] [Related]
24. Highly Efficient Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with Heteropoly Acids and Ionic Liquids. Chen R; Xin J; Yan D; Dong H; Lu X; Zhang S ChemSusChem; 2019 Jun; 12(12):2715-2724. PubMed ID: 30908861 [TBL] [Abstract][Full Text] [Related]
25. Bioconversion of 5-Hydroxymethylfurfural (HMF) to 2,5-Furandicarboxylic Acid (FDCA) by a Native Obligate Aerobic Bacterium, Acinetobacter calcoaceticus NL14. Sheng Y; Tan X; Zhou X; Xu Y Appl Biochem Biotechnol; 2020 Oct; 192(2):455-465. PubMed ID: 32394319 [TBL] [Abstract][Full Text] [Related]
26. Highly efficient and selective production of FFCA from CotA-TJ102 laccase-catalyzed oxidation of 5-HMF. Zhang C; Chang X; Zhu L; Xing Q; You S; Qi W; Su R; He Z Int J Biol Macromol; 2019 May; 128():132-139. PubMed ID: 30684571 [TBL] [Abstract][Full Text] [Related]
27. Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo- and bio-catalysis. Xia H; Xu S; Hu H; An J; Li C RSC Adv; 2018 Aug; 8(54):30875-30886. PubMed ID: 35548764 [TBL] [Abstract][Full Text] [Related]
28. Kinetic and chemical characterization of aldehyde oxidation by fungal aryl-alcohol oxidase. Ferreira P; Hernández-Ortega A; Herguedas B; Rencoret J; Gutiérrez A; Martínez MJ; Jiménez-Barbero J; Medina M; Martínez AT Biochem J; 2010 Jan; 425(3):585-93. PubMed ID: 19891608 [TBL] [Abstract][Full Text] [Related]
29. Experimental and DFT Study of Metal-Free Catalyst for Selective Oxidation of Biomass-Derived Molecule (HMF). Afroz K; Ntambwe M; Nuraje N Inorg Chem; 2020 Sep; 59(18):13335-13342. PubMed ID: 32806014 [TBL] [Abstract][Full Text] [Related]
30. Hydroxy and surface oxygen effects on 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid on β-MnO Tharat B; Ngamwongwan L; Seehamongkol T; Rungtaweevoranit B; Nonkumwong J; Suthirakun S; Faungnawakij K; Chanlek N; Plucksacholatarn A; Nimsaila W; Prommin C; Junkaew A Nanoscale; 2024 Jan; 16(2):678-690. PubMed ID: 37964613 [TBL] [Abstract][Full Text] [Related]
31. Sustainable Approaches to Selective Conversion of Cellulose Into 5-Hydroxymethylfurfural Promoted by Heterogeneous Acid Catalysts: A Review. Yao Y; Chen S; Zhang M Front Chem; 2022; 10():880603. PubMed ID: 35620654 [TBL] [Abstract][Full Text] [Related]
32. Expanding the Physiological Role of Aryl-Alcohol Flavooxidases as Quinone Reductases. Ferreira P; Carro J; Balcells B; Martínez AT; Serrano A Appl Environ Microbiol; 2023 May; 89(5):e0184422. PubMed ID: 37154753 [TBL] [Abstract][Full Text] [Related]
33. Efficient oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by a two-enzyme system: Combination of a bacterial laccase with catalase. Wei J; Yang L; Feng W Enzyme Microb Technol; 2023 Jan; 162():110144. PubMed ID: 36279638 [TBL] [Abstract][Full Text] [Related]
34. Ultra-Dense Supported Ruthenium Oxide Clusters via Directed Ion Exchange for Efficient Valorization of 5-Hydroxymethylfurfural. Lei C; Chen Z; Jiang T; Wang S; Du W; Cha S; Hao Y; Wang R; Cao X; Gong M Angew Chem Int Ed Engl; 2024 May; 63(21):e202319642. PubMed ID: 38554014 [TBL] [Abstract][Full Text] [Related]
35. Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60. Yuan H; Li J; Shin HD; Du G; Chen J; Shi Z; Liu L Bioresour Technol; 2018 Jan; 247():1184-1188. PubMed ID: 28893500 [TBL] [Abstract][Full Text] [Related]
36. Combinatorial synthetic pathway fine-tuning and comparative transcriptomics for metabolic engineering of Raoultella ornithinolytica BF60 to efficiently synthesize 2,5-furandicarboxylic acid. Yuan H; Liu Y; Li J; Shin HD; Du G; Shi Z; Chen J; Liu L Biotechnol Bioeng; 2018 Sep; 115(9):2148-2155. PubMed ID: 29733430 [TBL] [Abstract][Full Text] [Related]
37. Enhanced 2,5-Furandicarboxylic Acid (FDCA) Production in Yuan H; Liu Y; Lv X; Li J; Du G; Shi Z; Liu L J Microbiol Biotechnol; 2018 Dec; 28(12):1999-2008. PubMed ID: 30661342 [TBL] [Abstract][Full Text] [Related]
38. In Situ Growth of Ultrathin Ni(OH) Zhang J; Gong W; Yin H; Wang D; Zhang Y; Zhang H; Wang G; Zhao H ChemSusChem; 2021 Jul; 14(14):2935-2942. PubMed ID: 34013575 [TBL] [Abstract][Full Text] [Related]
39. Co-immobilization of galactose oxidase, catalase, and Mn-superoxide dismutase for efficient conversion of 5-hydroxymethylfurfural to 2,5-diformylfuran in water. Yang L; Wei J; Feng W Colloids Surf B Biointerfaces; 2023 Nov; 231():113541. PubMed ID: 37722253 [TBL] [Abstract][Full Text] [Related]
40. Synthesis of 2,5-furandicarboxylic acid by a TEMPO/laccase system coupled with Zou L; Zheng Z; Tan H; Xu Q; Ouyang J RSC Adv; 2020 Jun; 10(37):21781-21788. PubMed ID: 35516629 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]