These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 31528660)
1. Development and evaluation of a "trackerless" surgical planning and guidance system based on 3D Slicer. Yang X; Narasimhan S; Luo M; Thompson RC; Chambless LB; Morone PJ; He L; Dawant BM; Miga MI J Med Imaging (Bellingham); 2019 Jul; 6(3):035002. PubMed ID: 31528660 [TBL] [Abstract][Full Text] [Related]
2. Image guided surgery versus conventional brain tumor and craniotomy localization. Mahvash M; Boettcher I; Petridis AK; Besharati Tabrizi L J Neurosurg Sci; 2017 Feb; 61(1):8-13. PubMed ID: 25600554 [TBL] [Abstract][Full Text] [Related]
3. A method for the assessment of time-varying brain shift during navigated epilepsy surgery. De Momi E; Ferrigno G; Bosoni G; Bassanini P; Blasi P; Casaceli G; Fuschillo D; Castana L; Cossu M; Lo Russo G; Cardinale F Int J Comput Assist Radiol Surg; 2016 Mar; 11(3):473-81. PubMed ID: 26183148 [TBL] [Abstract][Full Text] [Related]
4. Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Hadani M; Spiegelman R; Feldman Z; Berkenstadt H; Ram Z Neurosurgery; 2001 Apr; 48(4):799-807; discussion 807-9. PubMed ID: 11322440 [TBL] [Abstract][Full Text] [Related]
5. [The study of self-constructed brainstem fiber bundle by neurosurgeon through using 3D-Slicer software]. Yang J; Wu YT; Dong K; Jiang H; Yang R; Wu Y; Xia HJ; Sun XC; Zhong D Zhonghua Yi Xue Za Zhi; 2020 Mar; 100(8):604-609. PubMed ID: 32164115 [No Abstract] [Full Text] [Related]
6. Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study. Mohammadi A; Ahmadian A; Azar AD; Sheykh AD; Amiri F; Alirezaie J Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1753-64. PubMed ID: 25958061 [TBL] [Abstract][Full Text] [Related]
7. The present and future role of intraoperative MRI in neurosurgical procedures. Alexander E; Moriarty TM; Kikinis R; Black P; Jolesz FM Stereotact Funct Neurosurg; 1997; 68(1-4 Pt 1):10-7. PubMed ID: 9711689 [TBL] [Abstract][Full Text] [Related]
8. Fusion and visualization of intraoperative cortical images with preoperative models for epilepsy surgical planning and guidance. Wang A; Mirsattari SM; Parrent AG; Peters TM Comput Aided Surg; 2011; 16(4):149-60. PubMed ID: 21668293 [TBL] [Abstract][Full Text] [Related]
9. Stereoscopic navigation-controlled display of preoperative MRI and intraoperative 3D ultrasound in planning and guidance of neurosurgery: new technology for minimally invasive image-guided surgery approaches. Hernes TA; Ommedal S; Lie T; Lindseth F; Langø T; Unsgaard G Minim Invasive Neurosurg; 2003 Jun; 46(3):129-37. PubMed ID: 12872188 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the utility of "3D Slicer" as a fast and independent tool to assess intrafractional organ dose variations in gynecological brachytherapy. Siavashpour Z; Aghamiri MR; Jaberi R; Dehghan-Manshadi HR; Sedaghat M; Kirisits C Brachytherapy; 2016; 15(4):514-523. PubMed ID: 27180127 [TBL] [Abstract][Full Text] [Related]
11. Algorithm for simulation of craniotomies assisted by peripheral for 3D virtual navigation. Duque SI; Ochoa JF; Botero AF; Ramirez M Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7043-6. PubMed ID: 26737914 [TBL] [Abstract][Full Text] [Related]
12. Future perspectives for intraoperative MRI. Jolesz FA Neurosurg Clin N Am; 2005 Jan; 16(1):201-13. PubMed ID: 15561539 [TBL] [Abstract][Full Text] [Related]
13. Computer-assisted neurosurgery system: Wayne State University hardware and software configuration. Zamorano L; Jiang Z; Kadi AM Comput Med Imaging Graph; 1994; 18(4):257-71. PubMed ID: 7923045 [TBL] [Abstract][Full Text] [Related]
14. Craniotomy guidance using a stereo-video-based tracking system. Thomas DG; Doshi P; Colchester A; Hawkes DJ; Hill DL; Zhao J; Maitland N; Strong AJ; Evans RI Stereotact Funct Neurosurg; 1996; 66(1-3):81-3. PubMed ID: 8938937 [TBL] [Abstract][Full Text] [Related]
15. Cortical surface tracking using a stereoscopic operating microscope. Sun H; Roberts DW; Farid H; Wu Z; Hartov A; Paulsen KD Neurosurgery; 2005 Jan; 56(1 Suppl):86-97; discussion 86-97. PubMed ID: 15799796 [TBL] [Abstract][Full Text] [Related]
16. Computer-Assisted Virtual Surgical Technology Versus Three-Dimensional Printing Technology in Preoperative Planning for Displaced Three and Four-Part Fractures of the Proximal End of the Humerus. Chen Y; Jia X; Qiang M; Zhang K; Chen S J Bone Joint Surg Am; 2018 Nov; 100(22):1960-1968. PubMed ID: 30480600 [TBL] [Abstract][Full Text] [Related]
17. Measurement of intraoperative brain surface deformation under a craniotomy. Hill DL; Maurer CR; Maciunas RJ; Barwise JA; Fitzpatrick JM; Wang MY Neurosurgery; 1998 Sep; 43(3):514-26; discussion 527-8. PubMed ID: 9733307 [TBL] [Abstract][Full Text] [Related]
18. Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Steinmeier R; Fahlbusch R; Ganslandt O; Nimsky C; Buchfelder M; Kaus M; Heigl T; Lenz G; Kuth R; Huk W Neurosurgery; 1998 Oct; 43(4):739-47; discussion 747-8. PubMed ID: 9766299 [TBL] [Abstract][Full Text] [Related]
19. Mono-stereo-autostereo: the evolution of 3-dimensional neurosurgical planning. Stadie AT; Kockro RA Neurosurgery; 2013 Jan; 72 Suppl 1():63-77. PubMed ID: 23254814 [TBL] [Abstract][Full Text] [Related]
20. Minimally invasive superficial temporal artery to middle cerebral artery bypass through a minicraniotomy: benefit of three-dimensional virtual reality planning using magnetic resonance angiography. Fischer G; Stadie A; Schwandt E; Gawehn J; Boor S; Marx J; Oertel J Neurosurg Focus; 2009 May; 26(5):E20. PubMed ID: 19408999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]