BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31528808)

  • 1. Development and Validation of the Quantum Mechanical Bespoke Protein Force Field.
    Allen AEA; Robertson MJ; Payne MC; Cole DJ
    ACS Omega; 2019 Sep; 4(11):14537-14550. PubMed ID: 31528808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QUBEKit: Automating the Derivation of Force Field Parameters from Quantum Mechanics.
    Horton JT; Allen AEA; Dodda LS; Cole DJ
    J Chem Inf Model; 2019 Apr; 59(4):1366-1381. PubMed ID: 30742438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. POSSIM: Parameterizing Complete Second-Order Polarizable Force Field for Proteins.
    Li X; Ponomarev SY; Sigalovsky DL; Cvitkovic JP; Kaminski GA
    J Chem Theory Comput; 2014 Nov; 10(11):4896-4910. PubMed ID: 25400518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residue-specific force field based on the protein coil library. RSFF1: modification of OPLS-AA/L.
    Jiang F; Zhou CY; Wu YD
    J Phys Chem B; 2014 Jun; 118(25):6983-98. PubMed ID: 24815738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HessFit: A Toolkit to Derive Automated Force Fields from Quantum Mechanical Information.
    Falbo E; Lavecchia A
    J Chem Inf Model; 2024 Jun; ():. PubMed ID: 38897917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling flexible protein-ligand binding in p38α MAP kinase using the QUBE force field.
    Horton JT; Allen AEA; Cole DJ
    Chem Commun (Camb); 2020 Jan; 56(6):932-935. PubMed ID: 31850454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Testing of the OPLS-AA/M Force Field for RNA.
    Robertson MJ; Qian Y; Robinson MC; Tirado-Rives J; Jorgensen WL
    J Chem Theory Comput; 2019 Apr; 15(4):2734-2742. PubMed ID: 30807148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.
    Maier JA; Martinez C; Kasavajhala K; Wickstrom L; Hauser KE; Simmerling C
    J Chem Theory Comput; 2015 Aug; 11(8):3696-713. PubMed ID: 26574453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein.
    Zhang P; Yang W
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Peptide and Protein Torsional Energetics with the OPLSAA Force Field.
    Robertson MJ; Tirado-Rives J; Jorgensen WL
    J Chem Theory Comput; 2015 Jul; 11(7):3499-509. PubMed ID: 26190950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Open Force Field BespokeFit: Automating Bespoke Torsion Parametrization at Scale.
    Horton JT; Boothroyd S; Wagner J; Mitchell JA; Gokey T; Dotson DL; Behara PK; Ramaswamy VK; Mackey M; Chodera JD; Anwar J; Mobley DL; Cole DJ
    J Chem Inf Model; 2022 Nov; 62(22):5622-5633. PubMed ID: 36351167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refining the description of peptide backbone conformations improves protein simulations using the GROMOS 53A6 force field.
    Cao Z; Lin Z; Wang J; Liu H
    J Comput Chem; 2009 Mar; 30(4):645-60. PubMed ID: 18780355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations.
    Duan Y; Wu C; Chowdhury S; Lee MC; Xiong G; Zhang W; Yang R; Cieplak P; Luo R; Lee T; Caldwell J; Wang J; Kollman P
    J Comput Chem; 2003 Dec; 24(16):1999-2012. PubMed ID: 14531054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parametrization of Backbone Flexibility in a Coarse-Grained Force Field for Proteins (COFFDROP) Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of All Possible Two-Residue Peptides.
    Frembgen-Kesner T; Andrews CT; Li S; Ngo NA; Shubert SA; Jain A; Olayiwola OJ; Weishaar MR; Elcock AH
    J Chem Theory Comput; 2015 May; 11(5):2341-54. PubMed ID: 26574429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled two-dimensional main-chain torsional potential for protein dynamics II: performance and validation.
    Gao Y; Li Y; Mou L; Hu W; Zheng J; Zhang JZ; Mei Y
    J Phys Chem B; 2015 Mar; 119(11):4188-93. PubMed ID: 25719206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of force field parameters for molecular simulation of polylactide.
    McAliley JH; Bruce DA
    J Chem Theory Comput; 2011 Jan; 7(11):3756-3767. PubMed ID: 22180734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.