These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31528877)

  • 1. Solid-state hydrogen rich boron-nitrogen compounds for energy storage.
    Kumar R; Karkamkar A; Bowden M; Autrey T
    Chem Soc Rev; 2019 Oct; 48(21):5350-5380. PubMed ID: 31528877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of hydrogen release and uptake in amine borane molecular complexes: thermodynamics of ammonia borane, ammonium borohydride, and the diammoniate of diborane.
    Autrey T; Bowden M; Karkamkar A
    Faraday Discuss; 2011; 151():157-69; discussion 199-212. PubMed ID: 22455068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen-rich boron-containing materials for hydrogen storage.
    Wang P; Kang XD
    Dalton Trans; 2008 Oct; (40):5400-13. PubMed ID: 19082020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ solid state 11B MAS-NMR studies of the thermal decomposition of ammonia borane: mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material.
    Stowe AC; Shaw WJ; Linehan JC; Schmid B; Autrey T
    Phys Chem Chem Phys; 2007 Apr; 9(15):1831-6. PubMed ID: 17415495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled Release of Diborane from Alkali Metal Borohydride using Ionic Liquid-Based Lewis Acids.
    Vasudevan AK; Wang Y; Biswas P; Shi K; Zachariah M
    Angew Chem Int Ed Engl; 2024 Jun; ():e202401743. PubMed ID: 38837598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.
    Lai Q; Paskevicius M; Sheppard DA; Buckley CE; Thornton AW; Hill MR; Gu Q; Mao J; Huang Z; Liu HK; Guo Z; Banerjee A; Chakraborty S; Ahuja R; Aguey-Zinsou KF
    ChemSusChem; 2015 Sep; 8(17):2789-825. PubMed ID: 26033917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-free, polyether-mediated H2-release from ammonia borane: roles of hydrogen bonding interactions in promoting dehydrogenation.
    Kim Y; Baek H; Lee JH; Yeo S; Kim K; Hwang SJ; Eun B; Nam SW; Lim TH; Yoon CW
    Phys Chem Chem Phys; 2013 Dec; 15(45):19584-94. PubMed ID: 24068365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blending materials composed of boron, nitrogen and carbon to transform approaches to liquid hydrogen stores.
    Whittemore SM; Bowden M; Karkamkar A; Parab K; Neiner D; Autrey T; Ishibashi JS; Chen G; Liu SY; Dixon DA
    Dalton Trans; 2016 Apr; 45(14):6196-203. PubMed ID: 26629961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Challenges of Solution and Slurry-Phase Chemical Hydrogen Storage Materials for Automotive Fuel Cell Applications.
    Semelsberger T; Graetz J; Sutton A; Rönnebro ECE
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33808765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-state thermolysis of ammonia borane and related materials for high-capacity hydrogen storage.
    Wang P
    Dalton Trans; 2012 Apr; 41(15):4296-302. PubMed ID: 22362138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopore-Supported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquid-Phase Chemical Hydrogen Storage Materials.
    Sun Q; Wang N; Xu Q; Yu J
    Adv Mater; 2020 Nov; 32(44):e2001818. PubMed ID: 32638425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of dihydrogen bonds in amine borane chemistry.
    Chen X; Zhao JC; Shore SG
    Acc Chem Res; 2013 Nov; 46(11):2666-75. PubMed ID: 24020948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.
    Yang J; Sudik A; Wolverton C; Siegel DJ
    Chem Soc Rev; 2010 Feb; 39(2):656-75. PubMed ID: 20111786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Ammonia Borane Nanoparticles and the Diammoniate of Diborane by Direct Combination of Diborane and Ammonia.
    Song Y; Ma N; Ma X; Fang F; Chen X; Guo Y
    Chemistry; 2016 Apr; 22(18):6228-33. PubMed ID: 26919680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ammonia-borane: the hydrogen source par excellence?
    Stephens FH; Pons V; Tom Baker R
    Dalton Trans; 2007 Jul; (25):2613-26. PubMed ID: 17576485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of the Dehydrogenation Pathways of Ammonia Diborane and Diammoniate of Diborane by Molecular Dynamics Simulations Using Reactive Force Fields.
    Gao P; Huang Z; Yu H
    J Phys Chem A; 2020 Mar; 124(9):1698-1704. PubMed ID: 32045237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium Hydrazinidoborane Ammoniate LiN₂H₃BH₃·0.25NH₃, a Derivative of Hydrazine Borane.
    Ould-Amara S; Granier D; Chiriac R; Toche F; Yot PG; Demirci UB
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Insights into Dehydrogenation of Partially Deuterated Ammonia Borane NH
    Petit JF; Demirci UB
    Inorg Chem; 2019 Jan; 58(1):489-494. PubMed ID: 30565454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrazine borane-induced destabilization of ammonia borane, and vice versa.
    Petit JF; Moussa G; Demirci UB; Toche F; Chiriac R; Miele P
    J Hazard Mater; 2014 Aug; 278():158-62. PubMed ID: 24956580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the homopolar dehydrocoupling of ammonia borane by solid-state multinuclear NMR spectroscopy.
    Roy B; Pal U; Bishnoi A; O'Dell LA; Sharma P
    Chem Commun (Camb); 2021 Feb; 57(15):1887-1890. PubMed ID: 33491684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.