These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31528893)

  • 21. High-pressure electrides: the chemical nature of interstitial quasiatoms.
    Miao MS; Hoffmann R
    J Am Chem Soc; 2015 Mar; 137(10):3631-7. PubMed ID: 25706033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FALDI-based criterion for and the origin of an electron density bridge with an associated (3,-1) critical point on Bader's molecular graph.
    de Lange JH; van Niekerk DME; Cukrowski I
    J Comput Chem; 2018 Oct; 39(27):2283-2299. PubMed ID: 30318597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Topology of electron charge density for chemical bonds from valence bond theory: a probe of bonding types.
    Zhang L; Ying F; Wu W; Hiberty PC; Shaik S
    Chemistry; 2009; 15(12):2979-89. PubMed ID: 19191241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linking the Character of the Metal-Ligand Bond to the Ligand NMR Shielding in Transition-Metal Complexes: NMR Contributions from Spin-Orbit Coupling.
    Novotný J; Vícha J; Bora PL; Repisky M; Straka M; Komorovsky S; Marek R
    J Chem Theory Comput; 2017 Aug; 13(8):3586-3601. PubMed ID: 28682632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energetics and bonding in aluminosilicate rings with alkali metal and alkaline-earth metal charge-compensating cations.
    Gatti C; Ottonello G; Richet P
    J Phys Chem A; 2012 Aug; 116(33):8584-98. PubMed ID: 22809367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FALDI-based decomposition of an atomic interaction line leads to 3D representation of the multicenter nature of interactions.
    de Lange JH; van Niekerk DME; Cukrowski I
    J Comput Chem; 2018 Jun; 39(16):973-985. PubMed ID: 29399814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The physical origin of large covalent-ionic resonance energies in some two-electron bonds.
    Hiberty PC; Ramozzi R; Song L; Wu W; Shaik S
    Faraday Discuss; 2007; 135():261-72; discussion 367-401, 503-6. PubMed ID: 17328432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-electron images in real space: natural adaptive orbitals.
    Menéndez M; Álvarez Boto R; Francisco E; Martín Pendás Á
    J Comput Chem; 2015 Apr; 36(11):833-43. PubMed ID: 25691432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A connection between domain-averaged Fermi hole orbitals and electron number distribution functions in real space.
    Francisco E; Martín Pendás A; Blanco MA
    J Chem Phys; 2009 Sep; 131(12):124125. PubMed ID: 19791870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-iterative method for constructing valence antibonding molecular orbitals and a molecule-adapted minimum basis.
    Aldossary A; Head-Gordon M
    J Chem Phys; 2022 Sep; 157(9):094102. PubMed ID: 36075741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An insight into the general relationship between the three dimensional structures of enzymes and their electronic wave functions: Implication for the prediction of functional sites of enzymes.
    Fukushima K; Wada M; Sakurai M
    Proteins; 2008 Jun; 71(4):1940-54. PubMed ID: 18186466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. X-ray molecular orbital analysis. II. Application to diformohydrazide, (NHCHO)
    Tanaka K; Wasada-Tsutsui Y
    Acta Crystallogr A Found Adv; 2021 Nov; 77(Pt 6):593-610. PubMed ID: 34726635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nature of the oxomolybdenum-thiolate pi-bond: implications for Mo-S bonding in sulfite oxidase and xanthine oxidase.
    McNaughton RL; Helton ME; Cosper MM; Enemark JH; Kirk ML
    Inorg Chem; 2004 Mar; 43(5):1625-37. PubMed ID: 14989655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Are One-Electron Bonds Any Different from Standard Two-Electron Covalent Bonds?
    Sousa DWO; Nascimento MAC
    Acc Chem Res; 2017 Sep; 50(9):2264-2272. PubMed ID: 28786664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecule intrinsic minimal basis sets. II. Bonding analyses for Si4H6 and Si2 to Si10.
    Lu WC; Wang CZ; Schmidt MW; Bytautas L; Ho KM; Ruedenberg K
    J Chem Phys; 2004 Feb; 120(6):2638-51. PubMed ID: 15268407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kβ X-ray emission spectroscopy offers unique chemical bonding insights: revisiting the electronic structure of ferrocene.
    Lancaster KM; Finkelstein KD; DeBeer S
    Inorg Chem; 2011 Jul; 50(14):6767-74. PubMed ID: 21692497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lanthanide(III) and actinide(III) complexes [M(BH4)2 (THF)5][BPh4] and [M(BH4)2(18-crown-6)][BPh4] (M = Nd, Ce, U): synthesis, crystal structure, and density functional theory investigation of the covalent contribution to metal-borohydride bonding.
    Arliguie T; Belkhiri L; Bouaoud SE; Thuéry P; Villiers C; Boucekkine A; Ephritikhine M
    Inorg Chem; 2009 Jan; 48(1):221-30. PubMed ID: 19053334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maximum bonding fragment orbitals for deciphering complex chemical interactions.
    Wang Y
    Phys Chem Chem Phys; 2018 May; 20(20):13792-13809. PubMed ID: 29745413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of quantum-mechanical interference and quasi-classical effects in conjugated hydrocarbons.
    Fantuzzi F; Cardozo TM; Nascimento MA
    Phys Chem Chem Phys; 2012 Apr; 14(16):5479-88. PubMed ID: 22410865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural J-coupling analysis: interpretation of scalar J-couplings in terms of natural bond orbitals.
    Wilkens SJ; Westler WM; Markley JL; Weinhold F
    J Am Chem Soc; 2001 Dec; 123(48):12026-36. PubMed ID: 11724611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.