These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 31528907)

  • 1. Modeling nanoribbon peeling.
    Gigli L; Vanossi A; Tosatti E
    Nanoscale; 2019 Oct; 11(37):17396-17400. PubMed ID: 31528907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lifted graphene nanoribbons on gold: from smooth sliding to multiple stick-slip regimes.
    Gigli L; Manini N; Tosatti E; Guerra R; Vanossi A
    Nanoscale; 2018 Jan; 10(4):2073-2080. PubMed ID: 29323381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Registry-Dependent Peeling of Layered Material Interfaces: The Case of Graphene Nanoribbons on Hexagonal Boron Nitride.
    Ouyang W; Hod O; Urbakh M
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43533-43539. PubMed ID: 34486375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical peeling of tethered nanoribbons.
    Silva A; Tosatti E; Vanossi A
    Nanoscale; 2022 May; 14(17):6384-6391. PubMed ID: 35412551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition between Sliding and Peeling of Graphene Nanoribbons under Horizontal Drag.
    Li R; Xu F
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detachment Dynamics of Graphene Nanoribbons on Gold.
    Gigli L; Kawai S; Guerra R; Manini N; Pawlak R; Feng X; Müllen K; Ruffieux P; Fasel R; Tosatti E; Meyer E; Vanossi A
    ACS Nano; 2019 Jan; 13(1):689-697. PubMed ID: 30525461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exfoliation and Characterization of V₂Se₉ Atomic Crystals.
    Kim BJ; Jeong BJ; Oh S; Chae S; Choi KH; Nasir T; Lee SH; Kim KW; Lim HK; Choi IJ; Moon JY; Yu HK; Lee JH; Choi JY
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30231555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate.
    Annett J; Cross GL
    Nature; 2016 Jul; 535(7611):271-5. PubMed ID: 27411633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The adhesion energy measured by a stress accumulation-peeling mechanism in the exfoliation of graphite.
    Xia M; Liang C; Cheng Z; Hu R; Liu S
    Phys Chem Chem Phys; 2019 Jan; 21(3):1217-1223. PubMed ID: 30566136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrugation of chemically converted graphene monolayers on SiO(2).
    Sinitskii A; Kosynkin DV; Dimiev A; Tour JM
    ACS Nano; 2010 Jun; 4(6):3095-102. PubMed ID: 20446664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscous peeling of a nanosheet.
    Agrawal A; Gravelle S; Kamal C; Botto L
    Soft Matter; 2022 May; 18(20):3967-3980. PubMed ID: 35551304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of the moiré superlattice scale lateral force modulation of graphene on a transition metal substrate.
    Gao L; Chen X; Ma Y; Yan Y; Ma T; Su Y; Qiao L
    Nanoscale; 2018 Jun; 10(22):10576-10583. PubMed ID: 29808195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons.
    Blankenburg S; Cai J; Ruffieux P; Jaafar R; Passerone D; Feng X; Müllen K; Fasel R; Pignedoli CA
    ACS Nano; 2012 Mar; 6(3):2020-5. PubMed ID: 22324827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.
    Llinas JP; Fairbrother A; Borin Barin G; Shi W; Lee K; Wu S; Yong Choi B; Braganza R; Lear J; Kau N; Choi W; Chen C; Pedramrazi Z; Dumslaff T; Narita A; Feng X; Müllen K; Fischer F; Zettl A; Ruffieux P; Yablonovitch E; Crommie M; Fasel R; Bokor J
    Nat Commun; 2017 Sep; 8(1):633. PubMed ID: 28935943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromechanical exfoliation of graphene on the atomistic scale.
    Sinclair RC; Suter JL; Coveney PV
    Phys Chem Chem Phys; 2019 Mar; 21(10):5716-5722. PubMed ID: 30801077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. States modulation in graphene nanoribbons through metal contacts.
    Archambault C; Rochefort A
    ACS Nano; 2013 Jun; 7(6):5414-20. PubMed ID: 23676006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of common solvent molecules on graphene and MoS
    Patil U; Caffrey NM
    J Chem Phys; 2018 Sep; 149(9):094702. PubMed ID: 30195294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials.
    Huang Y; Sutter E; Shi NN; Zheng J; Yang T; Englund D; Gao HJ; Sutter P
    ACS Nano; 2015 Nov; 9(11):10612-20. PubMed ID: 26336975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 Sep; 20(37):375704. PubMed ID: 19706941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.