These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 31528907)

  • 21. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 Sep; 20(37):375704. PubMed ID: 19706941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Knitted graphene-nanoribbon sheet: a mechanically robust structure.
    Wei N; Fan Z; Xu LQ; Zheng YP; Wang HQ; Zheng JC
    Nanoscale; 2012 Feb; 4(3):785-91. PubMed ID: 22170502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene Nanoribbons with Atomically Sharp Edges Produced by AFM Induced Self-Folding.
    Chang JS; Kim S; Sung HJ; Yeon J; Chang KJ; Li X; Kim S
    Small; 2018 Nov; 14(47):e1803386. PubMed ID: 30307700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deriving MoS
    Yang C; Wang B; Xie Y; Zheng Y; Jin C
    Nanotechnology; 2019 Jun; 30(25):255602. PubMed ID: 30802894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boron-Doped Graphene Nanoribbons: Electronic Structure and Raman Fingerprint.
    Senkovskiy BV; Usachov DY; Fedorov AV; Marangoni T; Haberer D; Tresca C; Profeta G; Caciuc V; Tsukamoto S; Atodiresei N; Ehlen N; Chen C; Avila J; Asensio MC; Varykhalov AY; Nefedov A; Wöll C; Kim TK; Hoesch M; Fischer FR; Grüneis A
    ACS Nano; 2018 Aug; 12(8):7571-7582. PubMed ID: 30004663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inertial and stick-slip regimes of unstable adhesive tape peeling.
    Dalbe MJ; Villey R; Ciccotti M; Santucci S; Cortet PP; Vanel L
    Soft Matter; 2016 May; 12(20):4537-48. PubMed ID: 27050487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomic-Scale Variations of the Mechanical Response of 2D Materials Detected by Noncontact Atomic Force Microscopy.
    de la Torre B; Ellner M; Pou P; Nicoara N; Pérez R; Gómez-Rodríguez JM
    Phys Rev Lett; 2016 Jun; 116(24):245502. PubMed ID: 27367394
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons.
    Talirz L; Söde H; Dumslaff T; Wang S; Sanchez-Valencia JR; Liu J; Shinde P; Pignedoli CA; Liang L; Meunier V; Plumb NC; Shi M; Feng X; Narita A; Müllen K; Fasel R; Ruffieux P
    ACS Nano; 2017 Feb; 11(2):1380-1388. PubMed ID: 28129507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO2.
    Geringer V; Liebmann M; Echtermeyer T; Runte S; Schmidt M; Rückamp R; Lemme MC; Morgenstern M
    Phys Rev Lett; 2009 Feb; 102(7):076102. PubMed ID: 19257693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic and magnetic properties of zigzag graphene nanoribbons on the (111) surface of Cu, Ag, and Au.
    Li Y; Zhang W; Morgenstern M; Mazzarello R
    Phys Rev Lett; 2013 May; 110(21):216804. PubMed ID: 23745911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tearing graphene sheets from adhesive substrates produces tapered nanoribbons.
    Sen D; Novoselov KS; Reis PM; Buehler MJ
    Small; 2010 May; 6(10):1108-16. PubMed ID: 20449852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of bending stiffness on the peeling behavior of an elastic thin film on a rigid substrate.
    Peng Z; Chen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042401. PubMed ID: 25974502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic edge states and coherent manipulation of graphene nanoribbons.
    Slota M; Keerthi A; Myers WK; Tretyakov E; Baumgarten M; Ardavan A; Sadeghi H; Lambert CJ; Narita A; Müllen K; Bogani L
    Nature; 2018 May; 557(7707):691-695. PubMed ID: 29849157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphene on h-BN: to align or not to align?
    Guerra R; van Wijk M; Vanossi A; Fasolino A; Tosatti E
    Nanoscale; 2017 Jun; 9(25):8799-8804. PubMed ID: 28621788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom.
    van der Lit J; Boneschanscher MP; Vanmaekelbergh D; Ijäs M; Uppstu A; Ervasti M; Harju A; Liljeroth P; Swart I
    Nat Commun; 2013; 4():2023. PubMed ID: 23756598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene nanoribbons anchored to SiC substrates.
    Le NB; Woods LM
    J Phys Condens Matter; 2016 Sep; 28(36):364001. PubMed ID: 27392014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical properties and magnetic flux-induced electronic band tuning of a T-graphene sheet and nanoribbon.
    Bandyopadhyay A; Nandy A; Chakrabarti A; Jana D
    Phys Chem Chem Phys; 2017 Aug; 19(32):21584-21594. PubMed ID: 28766610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring the height-to-height correlation function of corrugation in suspended graphene.
    Kirilenko DA; Brunkov PN
    Ultramicroscopy; 2016 Jun; 165():1-7. PubMed ID: 27043766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy gap opening by crossing drop cast single-layer graphene nanoribbons.
    Yamada TK; Fukuda H; Fujiwara T; Liu P; Nakamura K; Kasai S; Vazquez de Parga AL; Tanaka H
    Nanotechnology; 2018 Aug; 29(31):315705. PubMed ID: 29741492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spin-transport selectivity upon Co adsorption on antiferromagnetic graphene nanoribbons.
    Cocchi C; Prezzi D; Calzolari A; Molinari E
    J Chem Phys; 2010 Sep; 133(12):124703. PubMed ID: 20886961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.