These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 31528907)

  • 41. High thermoelectric performance in graphene nanoribbons by graphene/BN interface engineering.
    Tran VT; Saint-Martin J; Dollfus P
    Nanotechnology; 2015 Dec; 26(49):495202. PubMed ID: 26574344
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: effect of charge, dipole and molecular structure.
    Schlierf A; Yang H; Gebremedhn E; Treossi E; Ortolani L; Chen L; Minoia A; Morandi V; Samorì P; Casiraghi C; Beljonne D; Palermo V
    Nanoscale; 2013 May; 5(10):4205-16. PubMed ID: 23467481
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Superlubricity Enabled by Pressure-Induced Friction Collapse.
    Sun J; Zhang Y; Lu Z; Li Q; Xue Q; Du S; Pu J; Wang L
    J Phys Chem Lett; 2018 May; 9(10):2554-2559. PubMed ID: 29714483
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of the curvature of deformed graphene nanoribbons on their electronic and adsorptive properties: theoretical investigation based on the analysis of the local stress field for an atomic grid.
    Glukhova O; Slepchenkov M
    Nanoscale; 2012 Jun; 4(11):3335-44. PubMed ID: 22543701
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reversible, opto-mechanically induced spin-switching in a nanoribbon-spiropyran hybrid material.
    Wong BM; Ye SH; O'Bryan G
    Nanoscale; 2012 Feb; 4(4):1321-7. PubMed ID: 22228399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays.
    Suzuki H; Kaneko T; Shibuta Y; Ohno M; Maekawa Y; Kato T
    Nat Commun; 2016 Jun; 7():11797. PubMed ID: 27250877
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unraveling the Electronic Structure of Narrow Atomically Precise Chiral Graphene Nanoribbons.
    Merino-Díez N; Li J; Garcia-Lekue A; Vasseur G; Vilas-Varela M; Carbonell-Sanromà E; Corso M; Ortega JE; Peña D; Pascual JI; de Oteyza DG
    J Phys Chem Lett; 2018 Jan; 9(1):25-30. PubMed ID: 29220194
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anomalous Kondo resonance mediated by semiconducting graphene nanoribbons in a molecular heterostructure.
    Li Y; Ngo AT; DiLullo A; Latt KZ; Kersell H; Fisher B; Zapol P; Ulloa SE; Hla SW
    Nat Commun; 2017 Oct; 8(1):946. PubMed ID: 29038513
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carbon nanoelectronics: unzipping tubes into graphene ribbons.
    Santos H; Chico L; Brey L
    Phys Rev Lett; 2009 Aug; 103(8):086801. PubMed ID: 19792746
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of Stone-Wales defects and roughness degree on the lubricity of graphene on gold surfaces.
    Ebrahimi S
    J Mol Model; 2018 Mar; 24(4):80. PubMed ID: 29500494
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Instability of flat disks with respect to the formation of twisted ribbons in smectic-A* monolayers.
    Tu H; Pelcovits RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042505. PubMed ID: 23679434
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In situ scanning electron microscope peeling to quantify surface energy between multiwalled carbon nanotubes and graphene.
    Roenbeck MR; Wei X; Beese AM; Naraghi M; Furmanchuk A; Paci JT; Schatz GC; Espinosa HD
    ACS Nano; 2014 Jan; 8(1):124-38. PubMed ID: 24341540
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Viscous control of peeling an elastic sheet by bending and pulling.
    Lister JR; Peng GG; Neufeld JA
    Phys Rev Lett; 2013 Oct; 111(15):154501. PubMed ID: 24160604
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Translation symmetry breakdown in low-dimensional lattices of pentagonal rings.
    Avramov P; Demin V; Luo M; Choi CH; Sorokin PB; Yakobson B; Chernozatonskii L
    J Phys Chem Lett; 2015 Nov; 6(22):4525-31. PubMed ID: 26582476
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunneling microscopy.
    Wong HS; Durkan C; Chandrasekhar N
    ACS Nano; 2009 Nov; 3(11):3455-62. PubMed ID: 19795900
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bending energy penalty enhances the adhesive strength of functional amyloid curli to surfaces.
    Zhang Y; Wang A; DeBenedictis EP; Keten S
    Nanotechnology; 2017 Nov; 28(46):464002. PubMed ID: 28952462
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-Performance Charge Transport in Semiconducting Armchair Graphene Nanoribbons Grown Directly on Germanium.
    Jacobberger RM; Arnold MS
    ACS Nano; 2017 Sep; 11(9):8924-8929. PubMed ID: 28880526
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Local strain effect on the thermal transport of graphene nanoribbons: a molecular dynamics investigation.
    Xu L; Zhang X; Zheng Y
    Phys Chem Chem Phys; 2015 May; 17(18):12031-40. PubMed ID: 25872737
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores.
    Shekhirev M; Zahl P; Sinitskii A
    ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.