BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31529038)

  • 1. Human core duplicon gene families: game changers or game players?
    Bekpen C; Tautz D
    Brief Funct Genomics; 2019 Nov; 18(6):402-411. PubMed ID: 31529038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmental duplications and evolutionary acquisition of UV damage response in the SPATA31 gene family of primates and humans.
    Bekpen C; Künzel S; Xie C; Eaaswarkhanth M; Lin YL; Gokcumen O; Akdis CA; Tautz D
    BMC Genomics; 2017 Mar; 18(1):222. PubMed ID: 28264649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of human segmental duplications and the core duplicon hypothesis.
    Marques-Bonet T; Eichler EE
    Cold Spring Harb Symp Quant Biol; 2009; 74():355-62. PubMed ID: 19717539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic Disorder in Human Proteins Encoded by Core Duplicon Gene Families.
    Van Bibber NW; Haerle C; Khalife R; Dayhoff GW; Uversky VN
    J Phys Chem B; 2020 Sep; 124(37):8050-8070. PubMed ID: 32880174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary analysis of the highly dynamic CHEK2 duplicon in anthropoids.
    Münch C; Kirsch S; Fernandes AM; Schempp W
    BMC Evol Biol; 2008 Oct; 8():269. PubMed ID: 18831734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana.
    Cannon SB; Mitra A; Baumgarten A; Young ND; May G
    BMC Plant Biol; 2004 Jun; 4():10. PubMed ID: 15171794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenomic analysis reveals ancient segmental duplications in the human genome.
    Hafeez M; Shabbir M; Altaf F; Abbasi AA
    Mol Phylogenet Evol; 2016 Jan; 94(Pt A):95-100. PubMed ID: 26327327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling ancient segmental duplication events in human genome by phylogenetic analysis of multigene families residing on HOX-cluster paralogons.
    Abbasi AA
    Mol Phylogenet Evol; 2010 Nov; 57(2):836-48. PubMed ID: 20696259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel framework for the identification and analysis of duplicons between human and chimpanzee.
    Chuang TJ; Wu SZ; Huang YT
    Biomed Res Int; 2013; 2013():264532. PubMed ID: 23984331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Duplication Analysis Reveals No Ancient Whole Genome Duplication but Extensive Small-Scale Duplications during Genome Evolution and Adaptation of
    Wang S; Zhu XQ; Cai X
    Front Cell Infect Microbiol; 2017; 7():412. PubMed ID: 28983471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family.
    Olinski RP; Lundin LG; Hallböök F
    Mol Biol Evol; 2006 Jan; 23(1):10-22. PubMed ID: 16135778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhesus macaque class I duplicon structures, organization, and evolution within the alpha block of the major histocompatibility complex.
    Kulski JK; Anzai T; Shiina T; Inoko H
    Mol Biol Evol; 2004 Nov; 21(11):2079-91. PubMed ID: 15269276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary history of plant multisubunit RNA polymerases IV and V: subunit origins via genome-wide and segmental gene duplications, retrotransposition, and lineage-specific subfunctionalization.
    Tucker SL; Reece J; Ream TS; Pikaard CS
    Cold Spring Harb Symp Quant Biol; 2010; 75():285-97. PubMed ID: 21447813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome duplication and gene-family evolution: the case of three OXPHOS gene families.
    De Grassi A; Lanave C; Saccone C
    Gene; 2008 Sep; 421(1-2):1-6. PubMed ID: 18573316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution.
    Jiang Z; Tang H; Ventura M; Cardone MF; Marques-Bonet T; She X; Pevzner PA; Eichler EE
    Nat Genet; 2007 Nov; 39(11):1361-8. PubMed ID: 17922013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and evolution of the filaggrin gene repeated region in primates.
    Romero V; Hosomichi K; Nakaoka H; Shibata H; Inoue I
    BMC Evol Biol; 2017 Jan; 17(1):10. PubMed ID: 28077068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of gene family evolutionary histories on phylogenetic species tree inference by gene tree parsimony.
    Shi T
    Mol Phylogenet Evol; 2016 Mar; 96():9-16. PubMed ID: 26702957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extensive and continuous duplication facilitates rapid evolution and diversification of gene families.
    Chang D; Duda TF
    Mol Biol Evol; 2012 Aug; 29(8):2019-29. PubMed ID: 22337864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary dynamism of the primate LRRC37 gene family.
    Giannuzzi G; Siswara P; Malig M; Marques-Bonet T; ; Mullikin JC; Ventura M; Eichler EE
    Genome Res; 2013 Jan; 23(1):46-59. PubMed ID: 23064749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogenic adaptations of Colletotrichum fungi revealed by genome wide gene family evolutionary analyses.
    Liang X; Wang B; Dong Q; Li L; Rollins JA; Zhang R; Sun G
    PLoS One; 2018; 13(4):e0196303. PubMed ID: 29689067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.