These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31529040)

  • 21. PD-BertEDL: An Ensemble Deep Learning Method Using BERT and Multivariate Representation to Predict Peptide Detectability.
    Wang H; Wang J; Feng Z; Li Y; Zhao H
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MS-REDUCE: an ultrafast technique for reduction of big mass spectrometry data for high-throughput processing.
    Awan MG; Saeed F
    Bioinformatics; 2016 May; 32(10):1518-26. PubMed ID: 26801958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A reference peptide database for proteome quantification based on experimental mass spectrum response curves.
    Liu W; Wei L; Sun J; Feng J; Guo G; Liang L; Fu T; Liu M; Li K; Huang Y; Zhu W; Zhen B; Wang Y; Ding C; Qin J
    Bioinformatics; 2018 Aug; 34(16):2766-2772. PubMed ID: 29617941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SanXoT: a modular and versatile package for the quantitative analysis of high-throughput proteomics experiments.
    Trevisan-Herraz M; Bagwan N; García-Marqués F; Rodriguez JM; Jorge I; Ezkurdia I; Bonzon-Kulichenko E; Vázquez J
    Bioinformatics; 2019 May; 35(9):1594-1596. PubMed ID: 30252043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PB-Net: Automatic peak integration by sequential deep learning for multiple reaction monitoring.
    Wu Z; Serie D; Xu G; Zou J
    J Proteomics; 2020 Jul; 223():103820. PubMed ID: 32416316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PPTPP: a novel therapeutic peptide prediction method using physicochemical property encoding and adaptive feature representation learning.
    Zhang YP; Zou Q
    Bioinformatics; 2020 Jul; 36(13):3982-3987. PubMed ID: 32348463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning of protein sequence design of protein-protein interactions.
    Syrlybaeva R; Strauch EM
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36377772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. keras_dna: a wrapper for fast implementation of deep learning models in genomics.
    Routhier E; Bin Kamruddin A; Mozziconacci J
    Bioinformatics; 2021 Jul; 37(11):1593-1594. PubMed ID: 33135730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasma protein binding prediction focusing on residue-level features and circularity of cyclic peptides by deep learning.
    Li J; Yanagisawa K; Yoshikawa Y; Ohue M; Akiyama Y
    Bioinformatics; 2022 Jan; 38(4):1110-1117. PubMed ID: 34849593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine learning based prediction for peptide drift times in ion mobility spectrometry.
    Shah AR; Agarwal K; Baker ES; Singhal M; Mayampurath AM; Ibrahim YM; Kangas LJ; Monroe ME; Zhao R; Belov ME; Anderson GA; Smith RD
    Bioinformatics; 2010 Jul; 26(13):1601-7. PubMed ID: 20495001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DeepCrystal: a deep learning framework for sequence-based protein crystallization prediction.
    Elbasir A; Moovarkumudalvan B; Kunji K; Kolatkar PR; Mall R; Bensmail H
    Bioinformatics; 2019 Jul; 35(13):2216-2225. PubMed ID: 30462171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning.
    Wei L; Ye X; Sakurai T; Mu Z; Wei L
    Bioinformatics; 2022 Mar; 38(6):1514-1524. PubMed ID: 34999757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PDV: an integrative proteomics data viewer.
    Li K; Vaudel M; Zhang B; Ren Y; Wen B
    Bioinformatics; 2019 Apr; 35(7):1249-1251. PubMed ID: 30169737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. VIDHOP, viral host prediction with deep learning.
    Mock F; Viehweger A; Barth E; Marz M
    Bioinformatics; 2021 Apr; 37(3):318-325. PubMed ID: 32777818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting protein-peptide binding residues via interpretable deep learning.
    Wang R; Jin J; Zou Q; Nakai K; Wei L
    Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation and Highly Accurate Prediction of Missed Tryptic Cleavages by Deep Learning.
    Sun B; Smialowski P; Straub T; Imhof A
    J Proteome Res; 2021 Jul; 20(7):3749-3757. PubMed ID: 34137619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeepPurpose: a deep learning library for drug-target interaction prediction.
    Huang K; Fu T; Glass LM; Zitnik M; Xiao C; Sun J
    Bioinformatics; 2021 Apr; 36(22-23):5545-5547. PubMed ID: 33275143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uncertainty estimation of predictions of peptides' chromatographic retention times in shotgun proteomics.
    Maboudi Afkham H; Qiu X; The M; Käll L
    Bioinformatics; 2017 Feb; 33(4):508-513. PubMed ID: 27797755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pNovo 3: precise de novo peptide sequencing using a learning-to-rank framework.
    Yang H; Chi H; Zeng WF; Zhou WJ; He SM
    Bioinformatics; 2019 Jul; 35(14):i183-i190. PubMed ID: 31510687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effectively addressing complex proteomic search spaces with peptide spectrum matching.
    Borges D; Perez-Riverol Y; Nogueira FC; Domont GB; Noda J; da Veiga Leprevost F; Besada V; França FM; Barbosa VC; Sánchez A; Carvalho PC
    Bioinformatics; 2013 May; 29(10):1343-4. PubMed ID: 23446294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.