These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 31529398)
1. Rosette core fungal resistance in Arabidopsis thaliana. Dai Y; Ogilvie HA; Liu Y; Huang M; Markillie LM; Mitchell HD; Borrego EJ; Kolomiets MV; Gaffrey MJ; Orr G; Chehab EW; Mao WT; Braam J Planta; 2019 Dec; 250(6):1941-1953. PubMed ID: 31529398 [TBL] [Abstract][Full Text] [Related]
2. Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Contreras-Cornejo HA; Macías-Rodríguez L; Beltrán-Peña E; Herrera-Estrella A; López-Bucio J Plant Signal Behav; 2011 Oct; 6(10):1554-63. PubMed ID: 21931272 [TBL] [Abstract][Full Text] [Related]
3. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis. Magnin-Robert M; Le Bourse D; Markham J; Dorey S; Clément C; Baillieul F; Dhondt-Cordelier S Plant Physiol; 2015 Nov; 169(3):2255-74. PubMed ID: 26378098 [TBL] [Abstract][Full Text] [Related]
4. Phosphate deficiency increases plant susceptibility to Botrytis cinerea infection by inducing the abscisic acid pathway. Jaskolowski A; Poirier Y Plant J; 2024 Jul; 119(2):828-843. PubMed ID: 38804074 [TBL] [Abstract][Full Text] [Related]
5. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Lai Z; Wang F; Zheng Z; Fan B; Chen Z Plant J; 2011 Jun; 66(6):953-68. PubMed ID: 21395886 [TBL] [Abstract][Full Text] [Related]
6. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes. Catinot J; Huang JB; Huang PY; Tseng MY; Chen YL; Gu SY; Lo WS; Wang LC; Chen YR; Zimmerli L Plant Cell Environ; 2015 Dec; 38(12):2721-34. PubMed ID: 26038230 [TBL] [Abstract][Full Text] [Related]
7. The novel elicitor AsES triggers a defense response against Botrytis cinerea in Arabidopsis thaliana. Hael-Conrad V; Abou-Mansour E; Díaz-Ricci JC; Métraux JP; Serrano M Plant Sci; 2015 Dec; 241():120-7. PubMed ID: 26706064 [TBL] [Abstract][Full Text] [Related]
8. Tobacco NtabSPL6-2 can enhance local and systemic resistances of Arabidopsis thaliana to bacterial and fungal pathogens. Gao H; Zhang L; Zhang KL; Yang L; Ma YY; Xu ZQ J Plant Physiol; 2020 Oct; 253():153263. PubMed ID: 32836021 [TBL] [Abstract][Full Text] [Related]
10. Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors. Soulie MC; Koka SM; Floch K; Vancostenoble B; Barbe D; Daviere A; Soubigou-Taconnat L; Brunaud V; Poussereau N; Loisel E; Devallee A; Expert D; Fagard M Mol Plant Pathol; 2020 Nov; 21(11):1436-1450. PubMed ID: 32939948 [TBL] [Abstract][Full Text] [Related]
11. The Arabidopsis CCCH protein C3H14 contributes to basal defense against Botrytis cinerea mainly through the WRKY33-dependent pathway. Wang D; Xu H; Huang J; Kong Y; AbuQamar S; Yu D; Liu S; Zhou G; Chai G Plant Cell Environ; 2020 Jul; 43(7):1792-1806. PubMed ID: 32279333 [TBL] [Abstract][Full Text] [Related]
12. Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. Cerrudo I; Keller MM; Cargnel MD; Demkura PV; de Wit M; Patitucci MS; Pierik R; Pieterse CM; Ballaré CL Plant Physiol; 2012 Apr; 158(4):2042-52. PubMed ID: 22371506 [TBL] [Abstract][Full Text] [Related]
13. PROTEIN PHOSPHATASE 2A-B' Durian G; Jeschke V; Rahikainen M; Vuorinen K; Gollan PJ; Brosché M; Salojärvi J; Glawischnig E; Winter Z; Li S; Noctor G; Aro EM; Kangasjärvi J; Overmyer K; Burow M; Kangasjärvi S Plant Physiol; 2020 Feb; 182(2):1161-1181. PubMed ID: 31659127 [TBL] [Abstract][Full Text] [Related]
15. The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA. Li X; Yang R; Chen H PLoS One; 2018; 13(3):e0193458. PubMed ID: 29513733 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Meng X; Xu J; He Y; Yang KY; Mordorski B; Liu Y; Zhang S Plant Cell; 2013 Mar; 25(3):1126-42. PubMed ID: 23524660 [TBL] [Abstract][Full Text] [Related]
17. Ectopic expression of a grape aspartic protease gene, AP13, in Arabidopsis thaliana improves resistance to powdery mildew but increases susceptibility to Botrytis cinerea. Guo R; Tu M; Wang X; Zhao J; Wan R; Li Z; Wang Y; Wang X Plant Sci; 2016 Jul; 248():17-27. PubMed ID: 27181943 [TBL] [Abstract][Full Text] [Related]
18. Jasmonate signalling drives time-of-day differences in susceptibility of Arabidopsis to the fungal pathogen Botrytis cinerea. Ingle RA; Stoker C; Stone W; Adams N; Smith R; Grant M; Carré I; Roden LC; Denby KJ Plant J; 2015 Dec; 84(5):937-48. PubMed ID: 26466558 [TBL] [Abstract][Full Text] [Related]
19. RLP23 is required for Arabidopsis immunity against the grey mould pathogen Botrytis cinerea. Ono E; Mise K; Takano Y Sci Rep; 2020 Aug; 10(1):13798. PubMed ID: 32796867 [TBL] [Abstract][Full Text] [Related]
20. Different roles of glycine-rich RNA-binding protein7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and tobacco mosaic viruses. Lee HJ; Kim JS; Yoo SJ; Kang EY; Han SH; Yang KY; Kim YC; McSpadden Gardener B; Kang H Plant Physiol Biochem; 2012 Nov; 60():46-52. PubMed ID: 22902796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]