BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 31529398)

  • 1. Rosette core fungal resistance in Arabidopsis thaliana.
    Dai Y; Ogilvie HA; Liu Y; Huang M; Markillie LM; Mitchell HD; Borrego EJ; Kolomiets MV; Gaffrey MJ; Orr G; Chehab EW; Mao WT; Braam J
    Planta; 2019 Dec; 250(6):1941-1953. PubMed ID: 31529398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea.
    Contreras-Cornejo HA; Macías-Rodríguez L; Beltrán-Peña E; Herrera-Estrella A; López-Bucio J
    Plant Signal Behav; 2011 Oct; 6(10):1554-63. PubMed ID: 21931272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis.
    Magnin-Robert M; Le Bourse D; Markham J; Dorey S; Clément C; Baillieul F; Dhondt-Cordelier S
    Plant Physiol; 2015 Nov; 169(3):2255-74. PubMed ID: 26378098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens.
    Lai Z; Wang F; Zheng Z; Fan B; Chen Z
    Plant J; 2011 Jun; 66(6):953-68. PubMed ID: 21395886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes.
    Catinot J; Huang JB; Huang PY; Tseng MY; Chen YL; Gu SY; Lo WS; Wang LC; Chen YR; Zimmerli L
    Plant Cell Environ; 2015 Dec; 38(12):2721-34. PubMed ID: 26038230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The novel elicitor AsES triggers a defense response against Botrytis cinerea in Arabidopsis thaliana.
    Hael-Conrad V; Abou-Mansour E; Díaz-Ricci JC; Métraux JP; Serrano M
    Plant Sci; 2015 Dec; 241():120-7. PubMed ID: 26706064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tobacco NtabSPL6-2 can enhance local and systemic resistances of Arabidopsis thaliana to bacterial and fungal pathogens.
    Gao H; Zhang L; Zhang KL; Yang L; Ma YY; Xu ZQ
    J Plant Physiol; 2020 Oct; 253():153263. PubMed ID: 32836021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis.
    Windram O; Madhou P; McHattie S; Hill C; Hickman R; Cooke E; Jenkins DJ; Penfold CA; Baxter L; Breeze E; Kiddle SJ; Rhodes J; Atwell S; Kliebenstein DJ; Kim YS; Stegle O; Borgwardt K; Zhang C; Tabrett A; Legaie R; Moore J; Finkenstadt B; Wild DL; Mead A; Rand D; Beynon J; Ott S; Buchanan-Wollaston V; Denby KJ
    Plant Cell; 2012 Sep; 24(9):3530-57. PubMed ID: 23023172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors.
    Soulie MC; Koka SM; Floch K; Vancostenoble B; Barbe D; Daviere A; Soubigou-Taconnat L; Brunaud V; Poussereau N; Loisel E; Devallee A; Expert D; Fagard M
    Mol Plant Pathol; 2020 Nov; 21(11):1436-1450. PubMed ID: 32939948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Arabidopsis CCCH protein C3H14 contributes to basal defense against Botrytis cinerea mainly through the WRKY33-dependent pathway.
    Wang D; Xu H; Huang J; Kong Y; AbuQamar S; Yu D; Liu S; Zhou G; Chai G
    Plant Cell Environ; 2020 Jul; 43(7):1792-1806. PubMed ID: 32279333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism.
    Cerrudo I; Keller MM; Cargnel MD; Demkura PV; de Wit M; Patitucci MS; Pierik R; Pieterse CM; Ballaré CL
    Plant Physiol; 2012 Apr; 158(4):2042-52. PubMed ID: 22371506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PROTEIN PHOSPHATASE 2A-B'
    Durian G; Jeschke V; Rahikainen M; Vuorinen K; Gollan PJ; Brosché M; Salojärvi J; Glawischnig E; Winter Z; Li S; Noctor G; Aro EM; Kangasjärvi J; Overmyer K; Burow M; Kangasjärvi S
    Plant Physiol; 2020 Feb; 182(2):1161-1181. PubMed ID: 31659127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis.
    Rowe HC; Walley JW; Corwin J; Chan EK; Dehesh K; Kliebenstein DJ
    PLoS Pathog; 2010 Apr; 6(4):e1000861. PubMed ID: 20419157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA.
    Li X; Yang R; Chen H
    PLoS One; 2018; 13(3):e0193458. PubMed ID: 29513733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance.
    Meng X; Xu J; He Y; Yang KY; Mordorski B; Liu Y; Zhang S
    Plant Cell; 2013 Mar; 25(3):1126-42. PubMed ID: 23524660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ectopic expression of a grape aspartic protease gene, AP13, in Arabidopsis thaliana improves resistance to powdery mildew but increases susceptibility to Botrytis cinerea.
    Guo R; Tu M; Wang X; Zhao J; Wan R; Li Z; Wang Y; Wang X
    Plant Sci; 2016 Jul; 248():17-27. PubMed ID: 27181943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jasmonate signalling drives time-of-day differences in susceptibility of Arabidopsis to the fungal pathogen Botrytis cinerea.
    Ingle RA; Stoker C; Stone W; Adams N; Smith R; Grant M; Carré I; Roden LC; Denby KJ
    Plant J; 2015 Dec; 84(5):937-48. PubMed ID: 26466558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RLP23 is required for Arabidopsis immunity against the grey mould pathogen Botrytis cinerea.
    Ono E; Mise K; Takano Y
    Sci Rep; 2020 Aug; 10(1):13798. PubMed ID: 32796867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different roles of glycine-rich RNA-binding protein7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and tobacco mosaic viruses.
    Lee HJ; Kim JS; Yoo SJ; Kang EY; Han SH; Yang KY; Kim YC; McSpadden Gardener B; Kang H
    Plant Physiol Biochem; 2012 Nov; 60():46-52. PubMed ID: 22902796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea.
    Govrin EM; Levine A
    Curr Biol; 2000 Jun; 10(13):751-7. PubMed ID: 10898976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.