These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Production of giant unilamellar vesicles by the water-in-oil emulsion-transfer method without high internal concentrations of sugars. Tsuji G; Sunami T; Ichihashi N J Biosci Bioeng; 2018 Oct; 126(4):540-545. PubMed ID: 29793863 [TBL] [Abstract][Full Text] [Related]
6. Formation of Giant Unilamellar Vesicles Assisted by Fluorinated Nanoparticles. Waeterschoot J; Gosselé W; Alizadeh Zeinabad H; Lammertyn J; Koos E; Casadevall I Solvas X Adv Sci (Weinh); 2023 Dec; 10(34):e2302461. PubMed ID: 37807811 [TBL] [Abstract][Full Text] [Related]
7. In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles. Chen S; Sun ZG; Murrell MP J Vis Exp; 2022 Aug; (186):. PubMed ID: 36094272 [TBL] [Abstract][Full Text] [Related]
8. Preparation of Giant Vesicles Encapsulating Microspheres by Centrifugation of a Water-in-oil Emulsion. Natsume Y; Wen HI; Zhu T; Itoh K; Sheng L; Kurihara K J Vis Exp; 2017 Jan; (119):. PubMed ID: 28190062 [TBL] [Abstract][Full Text] [Related]
9. On-Chip Inverted Emulsion Method for Fast Giant Vesicle Production, Handling, and Analysis. Yandrapalli N; Seemann T; Robinson T Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32164221 [TBL] [Abstract][Full Text] [Related]
10. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models. Tivony R; Fletcher M; Al Nahas K; Keyser UF ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904 [TBL] [Abstract][Full Text] [Related]
11. Quantitative analysis of the lamellarity of giant liposomes prepared by the inverted emulsion method. Chiba M; Miyazaki M; Ishiwata S Biophys J; 2014 Jul; 107(2):346-354. PubMed ID: 25028876 [TBL] [Abstract][Full Text] [Related]
12. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method. Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588 [TBL] [Abstract][Full Text] [Related]
13. Advances in giant unilamellar vesicle preparation techniques and applications. Nair KS; Bajaj H Adv Colloid Interface Sci; 2023 Aug; 318():102935. PubMed ID: 37320960 [TBL] [Abstract][Full Text] [Related]
14. Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties. Lira RB; Dimova R; Riske KA Biophys J; 2014 Oct; 107(7):1609-19. PubMed ID: 25296313 [TBL] [Abstract][Full Text] [Related]
16. Optimization of the Electroformation of Giant Unilamellar Vesicles (GUVs) with Unsaturated Phospholipids. Breton M; Amirkavei M; Mir LM J Membr Biol; 2015 Oct; 248(5):827-35. PubMed ID: 26238509 [TBL] [Abstract][Full Text] [Related]
17. Measuring Encapsulation Efficiency in Cell-Mimicking Giant Unilamellar Vesicles. Supramaniam P; Wang Z; Chatzimichail S; Parperis C; Kumar A; Ho V; Ces O; Salehi-Reyhani A ACS Synth Biol; 2023 Apr; 12(4):1227-1238. PubMed ID: 36977193 [TBL] [Abstract][Full Text] [Related]
18. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device. Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890 [TBL] [Abstract][Full Text] [Related]
19. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions. Maktabi S; Malmstadt N; Schertzer JW; Chiarot PR Biomicrofluidics; 2021 Mar; 15(2):024112. PubMed ID: 33912267 [TBL] [Abstract][Full Text] [Related]
20. Protein Reconstitution Inside Giant Unilamellar Vesicles. Litschel T; Schwille P Annu Rev Biophys; 2021 May; 50():525-548. PubMed ID: 33667121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]