BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 31529570)

  • 1. Optimization of the Inverted Emulsion Method for High-Yield Production of Biomimetic Giant Unilamellar Vesicles.
    Moga A; Yandrapalli N; Dimova R; Robinson T
    Chembiochem; 2019 Oct; 20(20):2674-2682. PubMed ID: 31529570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets.
    Nishimura K; Suzuki H; Toyota T; Yomo T
    J Colloid Interface Sci; 2012 Jun; 376(1):119-25. PubMed ID: 22444482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles.
    Van de Cauter L; Fanalista F; van Buren L; De Franceschi N; Godino E; Bouw S; Danelon C; Dekker C; Koenderink GH; Ganzinger KA
    ACS Synth Biol; 2021 Jul; 10(7):1690-1702. PubMed ID: 34185516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells.
    Göpfrich K; Haller B; Staufer O; Dreher Y; Mersdorf U; Platzman I; Spatz JP
    ACS Synth Biol; 2019 May; 8(5):937-947. PubMed ID: 31042361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of giant unilamellar vesicles by the water-in-oil emulsion-transfer method without high internal concentrations of sugars.
    Tsuji G; Sunami T; Ichihashi N
    J Biosci Bioeng; 2018 Oct; 126(4):540-545. PubMed ID: 29793863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Giant Unilamellar Vesicles Assisted by Fluorinated Nanoparticles.
    Waeterschoot J; Gosselé W; Alizadeh Zeinabad H; Lammertyn J; Koos E; Casadevall I Solvas X
    Adv Sci (Weinh); 2023 Dec; 10(34):e2302461. PubMed ID: 37807811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles.
    Chen S; Sun ZG; Murrell MP
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 36094272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Giant Vesicles Encapsulating Microspheres by Centrifugation of a Water-in-oil Emulsion.
    Natsume Y; Wen HI; Zhu T; Itoh K; Sheng L; Kurihara K
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28190062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Chip Inverted Emulsion Method for Fast Giant Vesicle Production, Handling, and Analysis.
    Yandrapalli N; Seemann T; Robinson T
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32164221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of the lamellarity of giant liposomes prepared by the inverted emulsion method.
    Chiba M; Miyazaki M; Ishiwata S
    Biophys J; 2014 Jul; 107(2):346-354. PubMed ID: 25028876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in giant unilamellar vesicle preparation techniques and applications.
    Nair KS; Bajaj H
    Adv Colloid Interface Sci; 2023 Aug; 318():102935. PubMed ID: 37320960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties.
    Lira RB; Dimova R; Riske KA
    Biophys J; 2014 Oct; 107(7):1609-19. PubMed ID: 25296313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-Triggered Assembly of Endomembrane Multicompartments in Synthetic Cells.
    Lussier F; Schröter M; Diercks NJ; Jahnke K; Weber C; Frey C; Platzman I; Spatz JP
    ACS Synth Biol; 2022 Jan; 11(1):366-382. PubMed ID: 34889607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the Electroformation of Giant Unilamellar Vesicles (GUVs) with Unsaturated Phospholipids.
    Breton M; Amirkavei M; Mir LM
    J Membr Biol; 2015 Oct; 248(5):827-35. PubMed ID: 26238509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring Encapsulation Efficiency in Cell-Mimicking Giant Unilamellar Vesicles.
    Supramaniam P; Wang Z; Chatzimichail S; Parperis C; Kumar A; Ho V; Ces O; Salehi-Reyhani A
    ACS Synth Biol; 2023 Apr; 12(4):1227-1238. PubMed ID: 36977193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device.
    Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S
    Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Reconstitution Inside Giant Unilamellar Vesicles.
    Litschel T; Schwille P
    Annu Rev Biophys; 2021 May; 50():525-548. PubMed ID: 33667121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions.
    Maktabi S; Malmstadt N; Schertzer JW; Chiarot PR
    Biomicrofluidics; 2021 Mar; 15(2):024112. PubMed ID: 33912267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.