These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 31529708)
21. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet. Tsai SL; Hong JL; Chen MK; Jang LS Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398 [TBL] [Abstract][Full Text] [Related]
22. Dielectrophoretic separation of bioparticles in microdevices: a review. Jubery TZ; Srivastava SK; Dutta P Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825 [TBL] [Abstract][Full Text] [Related]
23. Modeling and simulation of dielectrophoretic collective dynamics in a suspension of polarizable particles under the action of a gradient AC electric field. Tada S; Shen Y; Qiu Z Electrophoresis; 2017 Jun; 38(11):1434-1440. PubMed ID: 28328070 [TBL] [Abstract][Full Text] [Related]
24. Dynamic drag force based on iterative density mapping: A new numerical tool for three-dimensional analysis of particle trajectories in a dielectrophoretic system. Knoerzer M; Szydzik C; Tovar-Lopez FJ; Tang X; Mitchell A; Khoshmanesh K Electrophoresis; 2016 Feb; 37(4):645-57. PubMed ID: 26643028 [TBL] [Abstract][Full Text] [Related]
26. Geometric and material determinants of patterning efficiency by dielectrophoresis. Albrecht DR; Sah RL; Bhatia SN Biophys J; 2004 Oct; 87(4):2131-47. PubMed ID: 15454417 [TBL] [Abstract][Full Text] [Related]
27. Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles. Kwizera EA; Sun M; White AM; Li J; He X ACS Biomater Sci Eng; 2021 Jun; 7(6):2043-2063. PubMed ID: 33871975 [TBL] [Abstract][Full Text] [Related]
32. Influence of particle-particle interactions and particles rotational motion in traveling wave dielectrophoresis. Aubry N; Singh P Electrophoresis; 2006 Feb; 27(3):703-15. PubMed ID: 16400702 [TBL] [Abstract][Full Text] [Related]
33. Dielectrophoretic force on a sphere near a planar boundary. Young EW; Li D Langmuir; 2005 Dec; 21(25):12037-46. PubMed ID: 16316150 [TBL] [Abstract][Full Text] [Related]
34. Electrokinetic Translocation of a Deformable Nanoparticle through a Nanopore. Zhou T; Ge J; Shi L; Liu Z; Deng Y; Peng Y; He X; Tang R; Wen L ACS Appl Bio Mater; 2020 Aug; 3(8):5160-5168. PubMed ID: 35021692 [TBL] [Abstract][Full Text] [Related]
35. Elucidating the Mechanisms of Two Unique Phenomena Governed by Particle-Particle Interaction under DEP: Tumbling Motion of Pearl Chains and Alignment of Ellipsoidal Particles. Zhao Y; Brcka J; Faguet J; Zhang G Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424212 [TBL] [Abstract][Full Text] [Related]
36. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Cummings EB; Singh AK Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447 [TBL] [Abstract][Full Text] [Related]
37. Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks. Lewpiriyawong N; Yang C; Lam YC Biomicrofluidics; 2008 Aug; 2(3):34105. PubMed ID: 19693372 [TBL] [Abstract][Full Text] [Related]
38. Tunable Droplet Manipulation and Characterization by ac-DEP. Zhao K; Li D ACS Appl Mater Interfaces; 2018 Oct; 10(42):36572-36581. PubMed ID: 30264985 [TBL] [Abstract][Full Text] [Related]
39. Dielectrophoretic Manipulation of Janus Particle in Conductive Media for Biomedical Applications. Lee M; Won JB; Jung DH; Kim J; Choi Y; Akyildiz K; Choi J; Kim K; Cho J; Yoon H; Koo HJ Biotechnol J; 2020 Dec; 15(12):e2000343. PubMed ID: 33067912 [TBL] [Abstract][Full Text] [Related]
40. The electrodynamics of rod-like microparticles based on optically induced dielectrophoresis. Shi L; Zhong X; Wu T; Bian Q; Liu X; Miao H; Deng Y; Yin B; Zhou T Electrophoresis; 2022 Nov; 43(21-22):2175-2183. PubMed ID: 36209396 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]