These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3152986)

  • 1. Renal reabsorption of phosphate during development: tubular events.
    Kaskel FJ; Kumar AM; Feld LG; Spitzer A
    Pediatr Nephrol; 1988 Jan; 2(1):129-34. PubMed ID: 3152986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal reabsorption of phosphate during development: whole-kidney events.
    Johnson V; Spitzer A
    Am J Physiol; 1986 Aug; 251(2 Pt 2):F251-6. PubMed ID: 3740271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tubular capacity for phosphate reabsorption in superficial and deep nephrons.
    Haramati A
    Am J Physiol; 1985 May; 248(5 Pt 2):F729-33. PubMed ID: 3993798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stationary microperfusion study of phosphate reabsorption in proximal and distal nephron segments.
    Lang F; Greger R; Marchand GR; Knox FG
    Pflugers Arch; 1977 Mar; 368(1-2):45-8. PubMed ID: 558598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between glucose and sodium excretion in the new-born dog.
    Baker JT; Kleinman LI
    J Physiol; 1974 Nov; 243(1):45-61. PubMed ID: 4449064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental changes in the renal capacity for sulfate reabsorption in the guinea pig.
    Neiberger RE
    Pediatr Nephrol; 1992 Jan; 6(1):65-7. PubMed ID: 1536743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distal tubular sodium reabsorption in the developing rat kidney.
    Aperia A; Elinder G
    Am J Physiol; 1981 Jun; 240(6):F487-91. PubMed ID: 7246738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnesium handling in the dog kidney: a micropuncture study.
    Quamme GA; Wong NL; Dirks JH; Roinel N; De Rouffignac C; Morel F
    Pflugers Arch; 1978 Oct; 377(1):95-9. PubMed ID: 569286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for an intrinsic renal tubular defect in mice with genetic hypophosphatemic rickets.
    Cowgill LD; Goldfarb S; Lau K; Slatopolsky E; Agus ZS
    J Clin Invest; 1979 Jun; 63(6):1203-10. PubMed ID: 221535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site of renal phosphate reabsorption. Micropuncture and microinfusion study.
    Greger R; Lang F; Marchand G; Knox FG
    Pflugers Arch; 1977 Jun; 369(2):111-8. PubMed ID: 560673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmented bicarbonate reabsorption by both the proximal and distal nephron maintains chloride-deplete metabolic alkalosis in rats.
    Wesson DE
    J Clin Invest; 1989 Nov; 84(5):1460-9. PubMed ID: 2808701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A micropuncture study of renal phosphate transport in rats with chronic renal failure and secondary hyperparathyroidism.
    Bank N; Su WS; Aynedjian HS
    J Clin Invest; 1978 Apr; 61(4):884-94. PubMed ID: 659581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proximal and distal tubular activity in chronically catheterized fetal sheep compared with the adult.
    Lumbers ER; Hill KJ; Bennett VJ
    Can J Physiol Pharmacol; 1988 Jun; 66(6):697-702. PubMed ID: 2844371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracer microinjection study of renal tubular phosphate reabsorption in the rat.
    Staum BB; Hamburger RJ; Goldberg M
    J Clin Invest; 1972 Sep; 51(9):2271-6. PubMed ID: 4639013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A micropuncture study of the effect of isoprenaline on renal tubular fluid and electrolyte transport in the rat.
    Greven J; Heidenreich O
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 287(2):117-28. PubMed ID: 1143355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relative contributions of reabsorptive rate and redistributed nephron filtration rate to changes in proximal tubular fractional reabsorption during acute saline infusion and aortic constriction in the rat.
    Bartoli E; Earley LE
    J Clin Invest; 1971 Oct; 50(10):2191-203. PubMed ID: 5116209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary sodium induces a redistribution of the tubular metabolic workload.
    Udwan K; Abed A; Roth I; Dizin E; Maillard M; Bettoni C; Loffing J; Wagner CA; Edwards A; Feraille E
    J Physiol; 2017 Nov; 595(22):6905-6922. PubMed ID: 28940314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased reabsorptive capacity after ureteral obstruction reduces the ability of glucose to inhibit phosphate reabsorption in rat kidney.
    Westenfelder C; Loghman-Adham M; Baranowski RL; Brownley R; Kablitz C
    Nephrol Dial Transplant; 1998 Jul; 13(7):1675-81. PubMed ID: 9681710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium handling and renal hemodynamics in euvolemic and volume-expanded nephrotic rats.
    Zatz R; Fujihara CK; Marcondes M
    Braz J Med Biol Res; 1986; 19(3):429-38. PubMed ID: 3594009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of potassium depletion on renal tubular chloride transport in the rat.
    Luke RG; Wright FS; Fowler N; Kashgarian M; Giebisch GH
    Kidney Int; 1978 Nov; 14(5):414-27. PubMed ID: 35645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.