These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
575 related articles for article (PubMed ID: 31529892)
21. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Wang K; Liu Y; Song Z; Wang D; Qiu W Chemosphere; 2019 Dec; 237():124480. PubMed ID: 31394449 [TBL] [Abstract][Full Text] [Related]
22. Phytoremediation of cadmium contaminated soils by Amaranthus Hypochondriacus L.: The effects of soil properties highlighting cation exchange capacity. Cui X; Mao P; Sun S; Huang R; Fan Y; Li Y; Li Y; Zhuang P; Li Z Chemosphere; 2021 Nov; 283():131067. PubMed ID: 34144285 [TBL] [Abstract][Full Text] [Related]
23. Use of low-calcium cultivars to reduce cadmium uptake and accumulation in edible amaranth (Amaranthus mangostanus L.). He BY; Yu DP; Chen Y; Shi JL; Xia Y; Li QS; Wang LL; Ling L; Zeng EY Chemosphere; 2017 Mar; 171():588-594. PubMed ID: 28043071 [TBL] [Abstract][Full Text] [Related]
24. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. Deng L; Li Z; Wang J; Liu H; Li N; Wu L; Hu P; Luo Y; Christie P Int J Phytoremediation; 2016; 18(2):134-40. PubMed ID: 26445166 [TBL] [Abstract][Full Text] [Related]
25. Effects of lily/maize intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor. Zhou L; Wang Y; Xie Z; Zhang Y; Malhi SS; Guo Z; Qiu Y; Wang L J Basic Microbiol; 2018 Oct; 58(10):892-901. PubMed ID: 30101457 [TBL] [Abstract][Full Text] [Related]
26. Influence of Pteris vittata-maize intercropping on plant agronomic parameters and soil arsenic remediation. Wan T; Dong X; Yu L; Li D; Han H; Tu S; Wan J Chemosphere; 2024 Jul; 359():142331. PubMed ID: 38740340 [TBL] [Abstract][Full Text] [Related]
27. Intercropping Sedum alfredii Hance and Cicer arietinum L. does not present a suitable land use pattern for multi-metal-polluted soil. He H; Jia Y; Li R; Yang P; Cao M; Luo J Environ Sci Pollut Res Int; 2023 Aug; 30(38):89616-89626. PubMed ID: 37454382 [TBL] [Abstract][Full Text] [Related]
28. Effects of intercropping with Bidens species plants on the growth and cadmium accumulation of Ziziphus acidojujuba seedlings. Deng Q; Deng Q; Wang Y; Li L; Long X; Ren S; Fan Y; Lin L; Xia H; Liang D; Wang J; Zhang H; Lv X; Wang Y Environ Monit Assess; 2019 May; 191(6):342. PubMed ID: 31053931 [TBL] [Abstract][Full Text] [Related]
29. Source-to-Sink Translocation of Carbon and Nitrogen Is Regulated by Fertilization and Plant Population in Maize-Pea Intercropping. Zhao Y; Fan Z; Hu F; Yin W; Zhao C; Yu A; Chai Q Front Plant Sci; 2019; 10():891. PubMed ID: 31354765 [TBL] [Abstract][Full Text] [Related]
30. [Ecological responses of Brassica juncea-alfalfa intercropping to cadmium stress]. Li XB; Xie JZ; Li BW; Wang W Ying Yong Sheng Tai Xue Bao; 2009 Jul; 20(7):1711-5. PubMed ID: 19899475 [TBL] [Abstract][Full Text] [Related]
31. AM fungi increase uptake of Cd and BDE-209 and activities of dismutase and catalase in amaranth (Amaranthus hypochondriacus L.) in two contaminants spiked soil. Li H; Huang WX; Gao MY; Li X; Xiang L; Mo CH; Li YW; Cai QY; Wong MH; Wu FY Ecotoxicol Environ Saf; 2020 Jun; 195():110485. PubMed ID: 32203776 [TBL] [Abstract][Full Text] [Related]
32. Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates. Zhang R; Mu Y; Li X; Li S; Sang P; Wang X; Wu H; Xu N Sci Total Environ; 2020 Oct; 740():139810. PubMed ID: 32563865 [TBL] [Abstract][Full Text] [Related]
33. [Effects of Intercropping of Yan XX; Xu YM; Wang L; Tao XY; Sun YB; Liang XF Huan Jing Ke Xue; 2020 Nov; 41(11):5151-5159. PubMed ID: 33124259 [TBL] [Abstract][Full Text] [Related]
34. Evaluating the influence of straw mulching and intercropping on nitrogen uptake, crop growth, and yield performance in maize and soybean. Liu S; Wang L; Chang L; Khan I; Nadeem F; Rehman A; Suo R Front Plant Sci; 2023; 14():1280382. PubMed ID: 37900744 [TBL] [Abstract][Full Text] [Related]
35. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Ma J; Lei E; Lei M; Liu Y; Chen T Chemosphere; 2018 Mar; 194():737-744. PubMed ID: 29247933 [TBL] [Abstract][Full Text] [Related]
36. Biochar and crushed straw additions affect cadmium absorption in cassava-peanut intercropping system. Zeng L; Lin X; Zhou F; Qin J; Li H Ecotoxicol Environ Saf; 2019 Jan; 167():520-530. PubMed ID: 30384059 [TBL] [Abstract][Full Text] [Related]
37. Rhizosphere soil properties of waxy sorghum under different row ratio configurations in waxy sorghum-soybean intercropping systems. Shao M; Wang C; Zhou L; Peng F; Zhang G; Gao J; Chen S; Zhao Q PLoS One; 2023; 18(7):e0288076. PubMed ID: 37410726 [TBL] [Abstract][Full Text] [Related]
38. Intercropping of Pteris vittata and maize on multimetal contaminated soil can achieve remediation and safe agricultural production. Zeng W; Wan X; Lei M; Chen T Sci Total Environ; 2024 Mar; 915():170074. PubMed ID: 38218467 [TBL] [Abstract][Full Text] [Related]
39. Effects of mutual intercropping on the cadmium accumulation in accumulator plants Stellaria media, Malachium aquaticum, and Galium aparine. Lu Q; Li J; Chen F; Liao M; Lin L; Tang Y; Liang D; Xia H; Lai Y; Wang X; Chen C; Ren W Environ Monit Assess; 2017 Nov; 189(12):622. PubMed ID: 29124423 [TBL] [Abstract][Full Text] [Related]
40. Water management increased rhizosphere redox potential and decreased Cd uptake in a low-Cd rice cultivar but decreased redox potential and increased Cd uptake in a high-Cd rice cultivar under intercropping. Xu Y; Feng J; Li H Sci Total Environ; 2021 Jan; 751():141701. PubMed ID: 32889460 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]