These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31530758)

  • 1. Conductive films prepared from inks based on copper nanoparticles synthesized by transferred arc discharge.
    Fu Q; Stein M; Li W; Zheng J; Kruis FE
    Nanotechnology; 2020 Jan; 31(2):025302. PubMed ID: 31530758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Preparation of Monodisperse Cu@Ag Core-Shell Nanoparticles for Conductive Ink in Printing Electronics.
    Li G; Yu X; Zhang R; Ouyang Q; Sun R; Cao L; Zhu P
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly conductive copper films prepared by multilayer sintering of nanoparticles synthesized via arc discharge.
    Fu Q; Li W; Kruis FE
    Nanotechnology; 2023 Mar; 34(22):. PubMed ID: 36805345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Antioxidative Conductive Copper Inks with Superior Adhesion.
    Ma WY; Cheng YY; Chen JK; Chan KH; Lin ZJ; Chou WH; Chang WC
    J Nanosci Nanotechnol; 2018 Jan; 18(1):318-322. PubMed ID: 29768847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films.
    Pajor-Świerzy A; Socha R; Pawłowski R; Warszyński P; Szczepanowicz K
    Nanotechnology; 2019 May; 30(22):225301. PubMed ID: 30721883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.
    Shen W; Zhang X; Huang Q; Xu Q; Song W
    Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution.
    Ding J; Liu J; Tian Q; Wu Z; Yao W; Dai Z; Liu L; Wu W
    Nanoscale Res Lett; 2016 Dec; 11(1):412. PubMed ID: 27644238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature.
    Deng D; Jin Y; Cheng Y; Qi T; Xiao F
    ACS Appl Mater Interfaces; 2013 May; 5(9):3839-46. PubMed ID: 23578010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Nanocellulose to Produce Water-Based Conductive Inks with Ag NPs for Printed Electronics.
    Martinez-Crespiera S; Pepió-Tàrrega B; González-Gil RM; Cecilia-Morillo F; Palmer J; Escobar AM; Beneitez-Álvarez S; Abitbol T; Fall A; Aulin C; Nevo Y; Beni V; Tolin E; Bahr A
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface Modified Flexible Printed Conductive Films via Ag
    Meng Y; Ma T; Pavinatto FJ; MacKenzie JD
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Study of the Preparation and Properties of Antioxidative Copper Inks with High Electrical Conductivity.
    Tsai CY; Chang WC; Chen GL; Chung CH; Liang JX; Ma WY; Yang TN
    Nanoscale Res Lett; 2015 Dec; 10(1):357. PubMed ID: 26370132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Synthesis of Copper Nanoparticles for Printed Electronic Materials Using Liquid Phase Reduction Method.
    Li K; Jiang X
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Ag@Cu Water-Based Nanomaterial Conductive Ink in 3D Printing.
    Zhao C; Wang J; Zhang Z; Qian B
    3D Print Addit Manuf; 2023 Jun; 10(3):552-558. PubMed ID: 37346186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Organizing, Environmentally Stable, and Low-Cost Copper-Nickel Complex Inks for Printed Flexible Electronics.
    Li W; Li L; Li F; Kawakami K; Sun Q; Nakayama T; Liu X; Kanehara M; Zhang J; Minari T
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8146-8156. PubMed ID: 35104116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper inks for printed electronics: a review.
    Zeng X; He P; Hu M; Zhao W; Chen H; Liu L; Sun J; Yang J
    Nanoscale; 2022 Nov; 14(43):16003-16032. PubMed ID: 36301077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile and Scalable Preparation of Solid Silver Nanoparticles (<10 nm) for Flexible Electronics.
    Tai YL; Yang ZG
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17104-11. PubMed ID: 26133543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A self-reducible and alcohol-soluble copper-based metal-organic decomposition ink for printed electronics.
    Shin DH; Woo S; Yem H; Cha M; Cho S; Kang M; Jeong S; Kim Y; Kang K; Piao Y
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3312-9. PubMed ID: 24512011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma-Induced Decomposition of Copper Complex Ink for the Formation of Highly Conductive Copper Tracks on Heat-Sensitive Substrates.
    Farraj Y; Smooha A; Kamyshny A; Magdassi S
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8766-8773. PubMed ID: 28229585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of chemical kinetics for sub-10 nm Cu nanoparticles to fabricate highly conductive ink below 150 °C.
    Choi CS; Jo YH; Kim MG; Lee HM
    Nanotechnology; 2012 Feb; 23(6):065601. PubMed ID: 22248919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.