These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31530878)

  • 1. Low-frequency perfect sound absorption achieved by a modulus-near-zero metamaterial.
    Shao C; Long H; Cheng Y; Liu X
    Sci Rep; 2019 Sep; 9(1):13482. PubMed ID: 31530878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin acoustic metamaterial as super absorber for broadband low-frequency underwater sound.
    Zhou X; Wang X; Xin F
    Sci Rep; 2023 May; 13(1):7983. PubMed ID: 37198226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials.
    Zhong S; He S
    Sci Rep; 2013; 3():2083. PubMed ID: 23803861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers.
    Duan H; Yang F; Shen X; Yin Q; Wang E; Zhang X; Yang X; Shen C; Peng W
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane-type smart metamaterials for multi-modal sound insulation.
    Zhang X; Chen F; Chen Z; Wang G
    J Acoust Soc Am; 2018 Dec; 144(6):3514. PubMed ID: 30599690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Optimization of Broadband Acoustic Metamaterial Absorber Based on Parallel-Connection Square Helmholtz Resonators.
    Wang E; Yang F; Shen X; Duan H; Zhang X; Yin Q; Peng W; Yang X; Yang L
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on a Hexagonal Acoustic Metamaterial Cell of Multiple Parallel-Connection Resonators with Tunable Perforating Rate.
    Cheng H; Yang F; Shen X; Yang X; Zhang X; Bi S
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perfect low-frequency sound absorption of rough neck embedded Helmholtz resonators.
    Zhang L; Xin F
    J Acoust Soc Am; 2022 Feb; 151(2):1191. PubMed ID: 35232096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The acoustic performances of a subwavelength hierarchical honeycomb structure: Analytical, numerical, and experimental investigations.
    Chen W; Lu C; Wang X; Liu S
    J Acoust Soc Am; 2023 Mar; 153(3):1754. PubMed ID: 37002108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound.
    Tang Y; Ren S; Meng H; Xin F; Huang L; Chen T; Zhang C; Lu TJ
    Sci Rep; 2017 Feb; 7():43340. PubMed ID: 28240239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multipole Resonance in Arrays of Diamond Dielectric: A Metamaterial Perfect Absorber in the Visible Regime.
    Li C; Fan H; Dai Q; Wei Z; Lan S; Liu H
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniaturization for ultrathin metamaterial perfect absorber in the VHF band.
    Khuyen BX; Tung BS; Yoo YJ; Kim YJ; Kim KW; Chen LY; Lam VD; Lee Y
    Sci Rep; 2017 Mar; 7():45151. PubMed ID: 28327658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process.
    Huang TY; Tseng CW; Yeh TT; Yeh TT; Luo CW; Akalin T; Yen TJ
    Sci Rep; 2015 Dec; 5():18605. PubMed ID: 26690846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-band tunable perfect metamaterial absorber based on graphene.
    Wang F; Huang S; Li L; Chen W; Xie Z
    Appl Opt; 2018 Aug; 57(24):6916-6922. PubMed ID: 30129577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subwavelength broadband sound absorber based on a composite metasurface.
    Long H; Liu C; Shao C; Cheng Y; Chen K; Qiu X; Liu X
    Sci Rep; 2020 Aug; 10(1):13823. PubMed ID: 32796874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addition of Two Substantial Side-Branch Silencers to the Interference Silencer by Incorporating a Zero-Mass Metamaterial.
    Sakamoto S; Shin J; Abe S; Toda K
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Underwater metamaterial absorber with impedance-matched composite.
    Qu S; Gao N; Tinel A; Morvan B; Romero-García V; Groby JP; Sheng P
    Sci Adv; 2022 May; 8(20):eabm4206. PubMed ID: 35584217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films.
    Duan Y; Luo J; Wang G; Hang ZH; Hou B; Li J; Sheng P; Lai Y
    Sci Rep; 2015 Jul; 5():12139. PubMed ID: 26184117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active control of graphene-based membrane-type acoustic metamaterials using a low voltage.
    Li Y; Wang S; Peng Q; Zhou Z; Yang Z; He X; Li Y
    Nanoscale; 2019 Sep; 11(35):16384-16392. PubMed ID: 31436776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.