These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 31531431)
1. Plasmonic nanoparticle simulations and inverse design using machine learning. He J; He C; Zheng C; Wang Q; Ye J Nanoscale; 2019 Sep; 11(37):17444-17459. PubMed ID: 31531431 [TBL] [Abstract][Full Text] [Related]
2. Plasmonic Surface Lattice Resonances: Theory and Computation. Cherqui C; Bourgeois MR; Wang D; Schatz GC Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203 [TBL] [Abstract][Full Text] [Related]
3. Infrared Plasmonic Metamaterials Based on Transparent Nanoparticle Films of In Matsui H; Shoji M; Higano S; Yoda H; Ono Y; Yang J; Misumi T; Fujita A ACS Appl Mater Interfaces; 2022 Nov; 14(43):49313-49325. PubMed ID: 36261131 [TBL] [Abstract][Full Text] [Related]
4. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects. Nikitin AG; Kabashin AV; Dallaporta H Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740 [TBL] [Abstract][Full Text] [Related]
5. Optical fibre-tip probes for SERS: numerical study for design considerations. Hutter T; Elliott SR; Mahajan S Opt Express; 2018 Jun; 26(12):15539-15550. PubMed ID: 30114813 [TBL] [Abstract][Full Text] [Related]
6. An Accessible Integrated Nanoparticle in a Metallic Hole Structure for Efficient Plasmonic Applications. Devaraj V; Choi JW; Lee JM; Oh JW Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160740 [TBL] [Abstract][Full Text] [Related]
8. Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene. Liu D; Wu T; Zhang Q; Wang X; Guo X; Su Y; Zhu Y; Shao M; Chen H; Luo Y; Lei D ACS Nano; 2019 Jul; 13(7):7644-7654. PubMed ID: 31244032 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional scanning near field optical microscopy (3D-SNOM) imaging of random arrays of copper nanoparticles: implications for plasmonic solar cell enhancement. Ezugwu S; Ye H; Fanchini G Nanoscale; 2015 Jan; 7(1):252-60. PubMed ID: 25406826 [TBL] [Abstract][Full Text] [Related]
10. Plasmonic-Field Interactions at Nanoparticle Interfaces for Infrared Thermal-Shielding Applications Based on Transparent Oxide Semiconductors. Matsui H; Furuta S; Hasebe T; Tabata H ACS Appl Mater Interfaces; 2016 May; 8(18):11749-57. PubMed ID: 27135708 [TBL] [Abstract][Full Text] [Related]
11. Giant optical activity from the radiative electromagnetic interactions in plasmonic nanoantennas. Wang P; Chen L; Wang R; Ji Y; Zhai D; Wu X; Liu Y; Chen K; Xu H Nanoscale; 2013 May; 5(9):3889-94. PubMed ID: 23529607 [TBL] [Abstract][Full Text] [Related]
12. Surface integral formulations for the design of plasmonic nanostructures. Forestiere C; Iadarola G; Rubinacci G; Tamburrino A; Dal Negro L; Miano G J Opt Soc Am A Opt Image Sci Vis; 2012 Nov; 29(11):2314-27. PubMed ID: 23201792 [TBL] [Abstract][Full Text] [Related]
13. Control of the plasmonic near-field in metallic nanohelices. Caridad JM; Winters S; McCloskey D; Duesberg GS; Donegan JF; Krstić V Nanotechnology; 2018 Aug; 29(32):325204. PubMed ID: 29781804 [TBL] [Abstract][Full Text] [Related]
14. Instantaneous Property Prediction and Inverse Design of Plasmonic Nanostructures Using Machine Learning: Current Applications and Future Directions. Xu X; Aggarwal D; Shankar K Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214962 [TBL] [Abstract][Full Text] [Related]
16. Angle-Resolved Polarimetry with Quasi-Bound States in the Continuum Plasmonic Metamaterials Yang Y; Jung W; Hur C; Kim H; Shin J; Choi M; Rho J ACS Nano; 2024 May; 18(20):12771-12780. PubMed ID: 38708928 [TBL] [Abstract][Full Text] [Related]
17. Quantifying spectral changes experienced by plasmonic nanoparticles in a cellular environment to inform biomedical nanoparticle design. Chen AL; Hu YS; Jackson MA; Lin AY; Young JK; Langsner RJ; Drezek RA Nanoscale Res Lett; 2014; 9(1):454. PubMed ID: 25258596 [TBL] [Abstract][Full Text] [Related]
18. Efficient volumetric method of moments for modeling plasmonic thin-film solar cells with periodic structures. He Z; Gu JH; Sha WEI; Chen RS Opt Express; 2018 Sep; 26(19):25037-25046. PubMed ID: 30469612 [TBL] [Abstract][Full Text] [Related]
19. Optimizing the electric field around solid and core-shell alloy nanostructures for near-field applications. Montaño-Priede L; Peña-Rodríguez O; Rivera A; Guerrero-Martínez A; Pal U Nanoscale; 2016 Aug; 8(31):14836-45. PubMed ID: 27451969 [TBL] [Abstract][Full Text] [Related]
20. Distribution of Single-Particle Resonances Determines the Plasmonic Response of Disordered Nanoparticle Ensembles. Sherman ZM; Milliron DJ; Truskett TM ACS Nano; 2024 Aug; 18(32):21347-21363. PubMed ID: 39092933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]