BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31531437)

  • 21. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells.
    Hindriksen S; Bramer AJ; Truong MA; Vromans MJM; Post JB; Verlaan-Klink I; Snippert HJ; Lens SMA; Hadders MA
    PLoS One; 2017; 12(6):e0179514. PubMed ID: 28640891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential.
    Oude Blenke E; Evers MJ; Mastrobattista E; van der Oost J
    J Control Release; 2016 Dec; 244(Pt B):139-148. PubMed ID: 27498021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework.
    Alsaiari SK; Patil S; Alyami M; Alamoudi KO; Aleisa FA; Merzaban JS; Li M; Khashab NM
    J Am Chem Soc; 2018 Jan; 140(1):143-146. PubMed ID: 29272114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial Virus Delivers CRISPR-Cas9 System for Genome Editing of Cells in Mice.
    Li L; Song L; Liu X; Yang X; Li X; He T; Wang N; Yang S; Yu C; Yin T; Wen Y; He Z; Wei X; Su W; Wu Q; Yao S; Gong C; Wei Y
    ACS Nano; 2017 Jan; 11(1):95-111. PubMed ID: 28114767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Nucleic Acid/Gold Nanorod-Based Nanoplatform for Targeted Gene Editing and Combined Tumor Therapy.
    Tang W; Han L; Lu X; Wang Z; Liu F; Li Y; Liu S; Liu S; Tian R; Liu J; Ding B
    ACS Appl Mater Interfaces; 2021 May; 13(18):20974-20981. PubMed ID: 33909408
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast.
    Zhang XR; He JB; Wang YZ; Du LL
    G3 (Bethesda); 2018 May; 8(6):2067-2077. PubMed ID: 29703785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different Methods of Delivering CRISPR/Cas9 Into Cells.
    Chandrasekaran AP; Song M; Kim KS; Ramakrishna S
    Prog Mol Biol Transl Sci; 2018; 159():157-176. PubMed ID: 30340786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiplex CRISPR/Cas9-based genome engineering enhanced by Drosha-mediated sgRNA-shRNA structure.
    Yan Q; Xu K; Xing J; Zhang T; Wang X; Wei Z; Ren C; Liu Z; Shao S; Zhang Z
    Sci Rep; 2016 Dec; 6():38970. PubMed ID: 27941919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency.
    Jensen KT; Fløe L; Petersen TS; Huang J; Xu F; Bolund L; Luo Y; Lin L
    FEBS Lett; 2017 Jul; 591(13):1892-1901. PubMed ID: 28580607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Straightforward Delivery of Linearized Double-Stranded DNA Encoding sgRNA and Donor DNA for the Generation of Single Nucleotide Variants Based on the CRISPR/Cas9 System.
    Jun S; Lim H; Jang H; Lee W; Ahn J; Lee JH; Bang D
    ACS Synth Biol; 2018 Jul; 7(7):1651-1659. PubMed ID: 29924933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9-mediated correction of human genetic disease.
    Men K; Duan X; He Z; Yang Y; Yao S; Wei Y
    Sci China Life Sci; 2017 May; 60(5):447-457. PubMed ID: 28534256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-viral delivery of genome-editing nucleases for gene therapy.
    Wang M; Glass ZA; Xu Q
    Gene Ther; 2017 Mar; 24(3):144-150. PubMed ID: 27797355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Photolabile Semiconducting Polymer Nanotransducer for Near-Infrared Regulation of CRISPR/Cas9 Gene Editing.
    Lyu Y; He S; Li J; Jiang Y; Sun H; Miao Y; Pu K
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):18197-18201. PubMed ID: 31566854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli.
    Nødvig CS; Hoof JB; Kogle ME; Jarczynska ZD; Lehmbeck J; Klitgaard DK; Mortensen UH
    Fungal Genet Biol; 2018 Jun; 115():78-89. PubMed ID: 29325827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A DNA Origami-Based Gene Editing System for Efficient Gene Therapy in Vivo.
    Tang W; Tong T; Wang H; Lu X; Yang C; Wu Y; Wang Y; Liu J; Ding B
    Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202315093. PubMed ID: 37906116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-in-one individual package and delivery of CRISPR/Cas9 ribonucleoprotein using apoferritin.
    Pan X; Pei X; Huang H; Su N; Wu Z; Wu Z; Qi X
    J Control Release; 2021 Sep; 337():686-697. PubMed ID: 34389365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Double-Network Nanogel as a Nonviral Vector for DNA Delivery.
    Ye M; Wang Y; Zhao Y; Xie R; Yodsanit N; Johnston K; Gong S
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):42865-42872. PubMed ID: 31696697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A pH-responsive silica-metal-organic framework hybrid nanoparticle for the delivery of hydrophilic drugs, nucleic acids, and CRISPR-Cas9 genome-editing machineries.
    Wang Y; Shahi PK; Xie R; Zhang H; Abdeen AA; Yodsanit N; Ma Z; Saha K; Pattnaik BR; Gong S
    J Control Release; 2020 Aug; 324():194-203. PubMed ID: 32380204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Delivery Challenge of Genome Editing in Human Epithelia.
    Calderón M; Hedtrich S
    Adv Healthc Mater; 2021 Oct; 10(19):e2100847. PubMed ID: 34165913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.