These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 31531488)

  • 1. Rheological properties and failure of alginate hydrogels with ionic and covalent crosslinks.
    Hashemnejad SM; Kundu S
    Soft Matter; 2019 Oct; 15(39):7852-7862. PubMed ID: 31531488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear-reversibly crosslinked alginate hydrogels for tissue engineering.
    Park H; Kang SW; Kim BS; Mooney DJ; Lee KY
    Macromol Biosci; 2009 Sep; 9(9):895-901. PubMed ID: 19422012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swelling and mechanical properties of alginate hydrogels with respect to promotion of neural growth.
    Matyash M; Despang F; Ikonomidou C; Gelinsky M
    Tissue Eng Part C Methods; 2014 May; 20(5):401-11. PubMed ID: 24044417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly stretchable HA/SA hydrogels for tissue engineering.
    Zhu C; Yang R; Hua X; Chen H; Xu J; Wu R; Cen L
    J Biomater Sci Polym Ed; 2018 Apr; 29(5):543-561. PubMed ID: 29316854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photo-activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism.
    Higham AK; Bonino CA; Raghavan SR; Khan SA
    Soft Matter; 2014 Jul; 10(27):4990-5002. PubMed ID: 24894636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering.
    Xing L; Sun J; Tan H; Yuan G; Li J; Jia Y; Xiong D; Chen G; Lai J; Ling Z; Chen Y; Niu X
    Int J Biol Macromol; 2019 Apr; 127():340-348. PubMed ID: 30658141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using cavitation rheology to understand dipeptide-based low molecular weight gels.
    Fuentes-Caparrós AM; Dietrich B; Thomson L; Chauveau C; Adams DJ
    Soft Matter; 2019 Aug; 15(31):6340-6347. PubMed ID: 31289805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-dependent structure and compressive mechanical behavior of alginate/polyethylene oxide-poly(propylene oxide)-poly(ethylene oxide) hydrogels.
    Quah SP; Nykypanchuk D; Bhatia SR
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):834-844. PubMed ID: 31232518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant and metal ion effects on the mechanical properties of alginate hydrogels.
    Kaygusuz H; Evingür GA; Pekcan Ö; von Klitzing R; Erim FB
    Int J Biol Macromol; 2016 Nov; 92():220-224. PubMed ID: 27381586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly stretchable and tough hydrogels.
    Sun JY; Zhao X; Illeperuma WR; Chaudhuri O; Oh KH; Mooney DJ; Vlassak JJ; Suo Z
    Nature; 2012 Sep; 489(7414):133-6. PubMed ID: 22955625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local structure of Ca(2+) induced hydrogels of alginate-oligoguluronate blends determined by small-angle-X-ray scattering.
    Yuguchi Y; Hasegawa A; Padoł AM; Draget KI; Stokke BT
    Carbohydr Polym; 2016 Nov; 152():532-540. PubMed ID: 27516301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alginate/PEO-PPO-PEO composite hydrogels with thermally-active plasticity.
    White JC; Saffer EM; Bhatia SR
    Biomacromolecules; 2013 Dec; 14(12):4456-64. PubMed ID: 24147595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheology and nanostructure of hydrophobically modified alginate (HMA) gels and solutions.
    Choudhary S; Bhatia SR
    Carbohydr Polym; 2012 Jan; 87(1):524-530. PubMed ID: 34662998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-inspired green light crosslinked alginate-heparin hydrogels support HUVEC tube formation.
    Charron PN; Garcia LM; Tahir I; Floreani RA
    J Mech Behav Biomed Mater; 2022 Jan; 125():104932. PubMed ID: 34736027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Large Amplitude Oscillatory Shear (LAOS) Study of Ionically and Physically Crosslinked Hydrogels.
    Goudoulas TB; Didonaki A; Pan S; Fattahi E; Becker T
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of mechanically strong and tough alginate hydrogels based on a soft-brittle transition.
    Zhao X; Xia Y; Zhang X; Lin X; Wang L
    Int J Biol Macromol; 2019 Oct; 139():850-857. PubMed ID: 31400427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of an injectable iron (III) crosslinked alginate-hyaluronic acid hydrogel with shear-thinning and antimicrobial activities.
    Shuai F; Zhang Y; Yin Y; Zhao H; Han X
    Carbohydr Polym; 2021 May; 260():117777. PubMed ID: 33712133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second harmonic generation microscopy of collagen organization in tunable, environmentally responsive alginate hydrogels.
    Boddupalli A; Bratlie KM
    Biomater Sci; 2019 Feb; 7(3):1188-1199. PubMed ID: 30656296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-swellable, cytocompatible pHEMA-alginate hydrogels with high stiffness and toughness.
    Kim YW; Kim JE; Jung Y; Sun JY
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():86-94. PubMed ID: 30573274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.