These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31531820)

  • 41. Focal But Not Diffuse Myocardial Fibrosis Burden Quantification Using Cardiac Magnetic Resonance Imaging Predicts Left Ventricular Reverse Modeling Following Cardiac Resynchronization Therapy.
    Chen Z; Sohal M; Sammut E; Child N; Jackson T; Claridge S; Cooklin M; O'Neill M; Wright M; Gill J; Chiribiri A; Schaeffter T; Carr-White G; Razavi R; Rinaldi CA
    J Cardiovasc Electrophysiol; 2016 Feb; 27(2):203-9. PubMed ID: 26463874
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Patient-tailored SyncAV algorithm: A novel strategy to improve synchrony and acute hemodynamic response in heart failure patients treated by cardiac resynchronization therapy.
    Wang J; Liang Y; Chen H; Wang W; Bai J; Chen X; Qin S; Su Y; Ge J
    J Cardiovasc Electrophysiol; 2020 Feb; 31(2):512-520. PubMed ID: 31828904
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Usefulness of Hemodynamic Device-Based Optimization in Heterogeneous Patients Implanted with Cardiac Resynchronization Therapy Defibrillator.
    Covino G; Volpicelli M; Ciardiello C; Capogrosso P
    J Cardiovasc Transl Res; 2020 Dec; 13(6):938-943. PubMed ID: 32385806
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanical dyssynchrony alters left ventricular flow energetics in failing hearts with LBBB: a 4D flow CMR pilot study.
    Zajac J; Eriksson J; Alehagen U; Ebbers T; Bolger AF; Carlhäll CJ
    Int J Cardiovasc Imaging; 2018 Apr; 34(4):587-596. PubMed ID: 29098524
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Noninvasive Quantification of Pressure-Volume Loops From Brachial Pressure and Cardiovascular Magnetic Resonance.
    Seemann F; Arvidsson P; Nordlund D; Kopic S; Carlsson M; Arheden H; Heiberg E
    Circ Cardiovasc Imaging; 2019 Dec; 12(1):e008493. PubMed ID: 30630347
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of a Lumped Parameter Model to Study the Feasibility of Simultaneous Implantation of a Continuous Flow Ventricular Assist Device (VAD) and a Pulsatile Flow VAD in BIVAD Patients.
    Di Molfetta A; Ferrari G; Iacobelli R; Filippelli S; Fresiello L; Guccione P; Toscano A; Amodeo A
    Artif Organs; 2017 Mar; 41(3):242-252. PubMed ID: 28281287
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A patient-specific modelling method of blood circulatory system for the numerical simulation of enhanced external counterpulsation.
    Li B; Wang H; Li G; Liu J; Zhang Z; Gu K; Yang H; Qiao A; Du J; Liu Y
    J Biomech; 2020 Oct; 111():110002. PubMed ID: 32898825
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Model order reduction for left ventricular mechanics via congruency training.
    Di Achille P; Parikh J; Khamzin S; Solovyova O; Kozloski J; Gurev V
    PLoS One; 2020; 15(1):e0219876. PubMed ID: 31905197
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tailor-made heart simulation predicts the effect of cardiac resynchronization therapy in a canine model of heart failure.
    Panthee N; Okada J; Washio T; Mochizuki Y; Suzuki R; Koyama H; Ono M; Hisada T; Sugiura S
    Med Image Anal; 2016 Jul; 31():46-62. PubMed ID: 26973218
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of strain imaging techniques in CRT candidates: CMR tagging, CMR feature tracking and speckle tracking echocardiography.
    van Everdingen WM; Zweerink A; Nijveldt R; Salden OAE; Meine M; Maass AH; Vernooy K; De Lange FJ; van Rossum AC; Croisille P; Clarysse P; Geelhoed B; Rienstra M; Van Gelder IC; Vos MA; Allaart CP; Cramer MJ
    Int J Cardiovasc Imaging; 2018 Mar; 34(3):443-456. PubMed ID: 29043465
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cardiac resynchronization therapy: mechanisms of action and scope for further improvement in cardiac function.
    Jones S; Lumens J; Sohaib SMA; Finegold JA; Kanagaratnam P; Tanner M; Duncan E; Moore P; Leyva F; Frenneaux M; Mason M; Hughes AD; Francis DP; Whinnett ZI;
    Europace; 2017 Jul; 19(7):1178-1186. PubMed ID: 27411361
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanistic evaluation of echocardiographic dyssynchrony indices: patient data combined with multiscale computer simulations.
    Lumens J; Leenders GE; Cramer MJ; De Boeck BW; Doevendans PA; Prinzen FW; Delhaas T
    Circ Cardiovasc Imaging; 2012 Jul; 5(4):491-9. PubMed ID: 22661491
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Patient-specific heart simulation can identify non-responders to cardiac resynchronization therapy.
    Isotani A; Yoneda K; Iwamura T; Watanabe M; Okada JI; Washio T; Sugiura S; Hisada T; Ando K
    Heart Vessels; 2020 Aug; 35(8):1135-1147. PubMed ID: 32166443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pacing in proximity to scar during cardiac resynchronization therapy increases local dispersion of repolarization and susceptibility to ventricular arrhythmogenesis.
    Mendonca Costa C; Neic A; Kerfoot E; Porter B; Sieniewicz B; Gould J; Sidhu B; Chen Z; Plank G; Rinaldi CA; Bishop MJ; Niederer SA
    Heart Rhythm; 2019 Oct; 16(10):1475-1483. PubMed ID: 30930329
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 4D modelling for rapid assessment of biventricular function in congenital heart disease.
    Gilbert K; Pontre B; Occleshaw CJ; Cowan BR; Suinesiaputra A; Young AA
    Int J Cardiovasc Imaging; 2018 Mar; 34(3):407-417. PubMed ID: 28856524
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ventricular geometry-regularized QRSd predicts cardiac resynchronization therapy response: machine learning from crosstalk between electrocardiography and echocardiography.
    Lei J; Wang YG; Bhatta L; Ahmed J; Fan D; Wang J; Liu K
    Int J Cardiovasc Imaging; 2019 Jul; 35(7):1221-1229. PubMed ID: 31104177
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative electromechanical and hemodynamic effects of left ventricular and biventricular pacing in dyssynchronous heart failure: electrical resynchronization versus left-right ventricular interaction.
    Lumens J; Ploux S; Strik M; Gorcsan J; Cochet H; Derval N; Strom M; Ramanathan C; Ritter P; Haïssaguerre M; Jaïs P; Arts T; Delhaas T; Prinzen FW; Bordachar P
    J Am Coll Cardiol; 2013 Dec; 62(25):2395-2403. PubMed ID: 24013057
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficient preloading of the ventricles by a properly timed atrial contraction underlies stroke work improvement in the acute response to cardiac resynchronization therapy.
    Hu Y; Gurev V; Constantino J; Trayanova N
    Heart Rhythm; 2013 Dec; 10(12):1800-6. PubMed ID: 23928177
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CMR DENSE and the Seattle Heart Failure Model Inform Survival and Arrhythmia Risk After CRT.
    Bilchick KC; Auger DA; Abdishektaei M; Mathew R; Sohn MW; Cai X; Sun C; Narayan A; Malhotra R; Darby A; Mangrum JM; Mehta N; Ferguson J; Mazimba S; Mason PK; Kramer CM; Levy WC; Epstein FH
    JACC Cardiovasc Imaging; 2020 Apr; 13(4):924-936. PubMed ID: 31864974
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Resynchronization improves heart-arterial coupling reducing arterial load determinants.
    Zócalo Y; Bia D; Armentano RL; González-Moreno J; Varela G; Calleriza F; Reyes-Caorsi W
    Europace; 2013 Apr; 15(4):554-65. PubMed ID: 23143859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.