These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Homotopy, symmetry, and non-Hermitian band topology. Yang K; Li Z; König JLK; Rødland L; Stålhammar M; Bergholtz EJ Rep Prog Phys; 2024 Jul; 87(7):. PubMed ID: 38957897 [TBL] [Abstract][Full Text] [Related]
3. Non-Hermitian Sensing in Photonics and Electronics: A Review. De Carlo M; De Leonardis F; Soref RA; Colatorti L; Passaro VMN Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684602 [TBL] [Abstract][Full Text] [Related]
4. Perfect Thermal Emission by Nanoscale Transmission Line Resonators. Liu B; Gong W; Yu B; Li P; Shen S Nano Lett; 2017 Feb; 17(2):666-672. PubMed ID: 28045267 [TBL] [Abstract][Full Text] [Related]
5. Parity-Time Symmetry in Non-Hermitian Complex Optical Media. Gupta SK; Zou Y; Zhu XY; Lu MH; Zhang LJ; Liu XP; Chen YF Adv Mater; 2020 Jul; 32(27):e1903639. PubMed ID: 31830340 [TBL] [Abstract][Full Text] [Related]
6. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor. Asano T; Suemitsu M; Hashimoto K; De Zoysa M; Shibahara T; Tsutsumi T; Noda S Sci Adv; 2016 Dec; 2(12):e1600499. PubMed ID: 28028532 [TBL] [Abstract][Full Text] [Related]
7. Selective Emitter with Engineered Anisotropic Radiation to Minimize Dual-Band Thermal Signature for Infrared Stealth Technology. Park C; Kim J; Hahn JW ACS Appl Mater Interfaces; 2020 Sep; 12(38):43090-43097. PubMed ID: 32862637 [TBL] [Abstract][Full Text] [Related]
8. Reconfigurable parity-time symmetry transition in phase change metamaterials. Cao T; Cao Y; Fang L Nanoscale; 2019 Aug; 11(34):15828-15835. PubMed ID: 31183490 [TBL] [Abstract][Full Text] [Related]
9. Reservoir-Mediated Quantum Correlations in Non-Hermitian Optical System. Cao W; Lu X; Meng X; Sun J; Shen H; Xiao Y Phys Rev Lett; 2020 Jan; 124(3):030401. PubMed ID: 32031853 [TBL] [Abstract][Full Text] [Related]
10. Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators. Choi Y; Hahn C; Yoon JW; Song SH Nat Commun; 2018 Jun; 9(1):2182. PubMed ID: 29872042 [TBL] [Abstract][Full Text] [Related]
11. Breaking Anti-PT Symmetry by Spinning a Resonator. Zhang H; Huang R; Zhang SD; Li Y; Qiu CW; Nori F; Jing H Nano Lett; 2020 Oct; 20(10):7594-7599. PubMed ID: 32936650 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Xia S; Kaltsas D; Song D; Komis I; Xu J; Szameit A; Buljan H; Makris KG; Chen Z Science; 2021 Apr; 372(6537):72-76. PubMed ID: 33795453 [TBL] [Abstract][Full Text] [Related]
13. Chirality-switchable acoustic vortex emission via non-Hermitian selective excitation at an exceptional point. Liu T; An S; Gu Z; Liang S; Gao H; Ma G; Zhu J Sci Bull (Beijing); 2022 Jun; 67(11):1131-1136. PubMed ID: 36545979 [TBL] [Abstract][Full Text] [Related]
15. Temporal Parity-Time Symmetry for Extreme Energy Transformations. Li H; Yin S; Galiffi E; Alù A Phys Rev Lett; 2021 Oct; 127(15):153903. PubMed ID: 34677997 [TBL] [Abstract][Full Text] [Related]
16. Experimental Demonstration of Controllable PT and Anti-PT Coupling in a Non-Hermitian Metamaterial. Li C; Yang R; Huang X; Fu Q; Fan Y; Zhang F Phys Rev Lett; 2024 Apr; 132(15):156601. PubMed ID: 38682984 [TBL] [Abstract][Full Text] [Related]
17. Spectrally and Spatially Selective Emitters Using Polymer Hybrid Spoof Plasmonics. Lee GJ; Kim DH; Heo SY; Song YM ACS Appl Mater Interfaces; 2020 Nov; 12(47):53206-53214. PubMed ID: 33172255 [TBL] [Abstract][Full Text] [Related]