These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31531942)

  • 1. Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures.
    Guell Izard A; Bauer J; Crook C; Turlo V; Valdevit L
    Small; 2019 Nov; 15(45):e1903834. PubMed ID: 31531942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoarchitected metal/ceramic interpenetrating phase composites.
    Bauer J; Sala-Casanovas M; Amiri M; Valdevit L
    Sci Adv; 2022 Aug; 8(33):eabo3080. PubMed ID: 35977008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional High-Entropy Alloy-Polymer Composite Nanolattices That Overcome the Strength-Recoverability Trade-off.
    Zhang X; Yao J; Liu B; Yan J; Lu L; Li Y; Gao H; Li X
    Nano Lett; 2018 Jul; 18(7):4247-4256. PubMed ID: 29901403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving the theoretical limit of strength in shell-based carbon nanolattices.
    Wang Y; Zhang X; Li Z; Gao H; Li X
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2119536119. PubMed ID: 35969756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices.
    Meza LR; Das S; Greer JR
    Science; 2014 Sep; 345(6202):1322-6. PubMed ID: 25214624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity.
    Cheng H; Zhu X; Cheng X; Cai P; Liu J; Yao H; Zhang L; Duan J
    Nat Commun; 2023 Mar; 14(1):1243. PubMed ID: 36871035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, Fabrication, and Mechanics of 3D Micro-/Nanolattices.
    Zhang X; Wang Y; Ding B; Li X
    Small; 2020 Apr; 16(15):e1902842. PubMed ID: 31483576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanolattices: An Emerging Class of Mechanical Metamaterials.
    Bauer J; Meza LR; Schaedler TA; Schwaiger R; Zheng X; Valdevit L
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28873250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plate-nanolattices at the theoretical limit of stiffness and strength.
    Crook C; Bauer J; Guell Izard A; Santos de Oliveira C; Martins de Souza E Silva J; Berger JB; Valdevit L
    Nat Commun; 2020 Mar; 11(1):1579. PubMed ID: 32221283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tensegrity Metamaterials: Toward Failure-Resistant Engineering Systems through Delocalized Deformation.
    Bauer J; Kraus JA; Crook C; Rimoli JJ; Valdevit L
    Adv Mater; 2021 Mar; 33(10):e2005647. PubMed ID: 33543809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resilient 3D hierarchical architected metamaterials.
    Meza LR; Zelhofer AJ; Clarke N; Mateos AJ; Kochmann DM; Greer JR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11502-7. PubMed ID: 26330605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extreme mechanical resilience of self-assembled nanolabyrinthine materials.
    Portela CM; Vidyasagar A; Krödel S; Weissenbach T; Yee DW; Greer JR; Kochmann DM
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5686-5693. PubMed ID: 32132212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Energy Absorption Characteristics of Architected Honeycombs Enabled via Additive Manufacturing.
    Kumar S; Ubaid J; Abishera R; Schiffer A; Deshpande VS
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42549-42560. PubMed ID: 31566942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh stress and strain in hierarchically structured hollow nanoparticles.
    Shan ZW; Adesso G; Cabot A; Sherburne MP; Asif SA; Warren OL; Chrzan DC; Minor AM; Alivisatos AP
    Nat Mater; 2008 Dec; 7(12):947-52. PubMed ID: 18931673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth.
    Maggi A; Li H; Greer JR
    Acta Biomater; 2017 Nov; 63():294-305. PubMed ID: 28923538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaching theoretical strength in glassy carbon nanolattices.
    Bauer J; Schroer A; Schwaiger R; Kraft O
    Nat Mater; 2016 Apr; 15(4):438-43. PubMed ID: 26828314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoupling particle-impact dissipation mechanisms in 3D architected materials.
    Butruille T; Crone JC; Portela CM
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2313962121. PubMed ID: 38306480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimally-Tailored Spinodal Architected Materials for Multiscale Design and Manufacturing.
    Senhora FV; Sanders ED; Paulino GH
    Adv Mater; 2022 Jul; 34(26):e2109304. PubMed ID: 35297113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong, Ultralight Nanofoams with Extreme Recovery and Dissipation by Manipulation of Internal Adhesive Contacts.
    Park SJ; Shin J; Magagnosc DJ; Kim S; Cao C; Turner KT; Purohit PK; Gianola DS; Hart AJ
    ACS Nano; 2020 Jul; 14(7):8383-8391. PubMed ID: 32348120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microlattice Metamaterials with Simultaneous Superior Acoustic and Mechanical Energy Absorption.
    Li X; Yu X; Chua JW; Lee HP; Ding J; Zhai W
    Small; 2021 Jun; 17(24):e2100336. PubMed ID: 33984173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.