BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 31531968)

  • 1. Strategy for achieving standardized bone models.
    Hadida M; Marchat D
    Biotechnol Bioeng; 2020 Jan; 117(1):251-271. PubMed ID: 31531968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioreactors and Microfluidics for Osteochondral Interface Maturation.
    Canadas RF; Marques AP; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2018; 1059():395-420. PubMed ID: 29736584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of cell differentiation in bone tissue engineering constructs cultured in a bioreactor.
    Holtorf HL; Jansen JA; Mikos AG
    Adv Exp Med Biol; 2006; 585():225-41. PubMed ID: 17120788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfused multiwell plate for 3D liver tissue engineering.
    Domansky K; Inman W; Serdy J; Dash A; Lim MH; Griffith LG
    Lab Chip; 2010 Jan; 10(1):51-8. PubMed ID: 20024050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration.
    Bicho D; Pina S; Oliveira JM; Reis RL
    Adv Exp Med Biol; 2018; 1059():373-394. PubMed ID: 29736583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a novel 3D flow model for the optimization of construct perfusion in radial-flow packed-bed bioreactors (rPBBs) for long-bone tissue engineering.
    Fragomeni G; Iannelli R; Falvo D'Urso Labate G; Schwentenwein M; Catapano G
    N Biotechnol; 2019 Sep; 52():110-120. PubMed ID: 31173925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of perfusion bioreactors and large animal models for long bone tissue engineering.
    Gardel LS; Serra LA; Reis RL; Gomes ME
    Tissue Eng Part B Rev; 2014 Apr; 20(2):126-46. PubMed ID: 23924374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing a Customized Perfusion Bioreactor Prototype with Controlled Positional Variability in Oxygen Partial Pressure for Bone and Cartilage Tissue Engineering.
    Lee PS; Eckert H; Hess R; Gelinsky M; Rancourt D; Krawetz R; Cuniberti G; Scharnweber D
    Tissue Eng Part C Methods; 2017 May; 23(5):286-297. PubMed ID: 28401793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple model for the perfusion of porous hydrogel scaffolds under culture in a sustentation like bioreactor.
    Knapp Y; Deplano V; Bertrand E
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():268-9. PubMed ID: 23923937
    [No Abstract]   [Full Text] [Related]  

  • 10. Validation of an in vitro 3D bone culture model with perfused and mechanically stressed ceramic scaffold.
    Bouet G; Cruel M; Laurent C; Vico L; Malaval L; Marchat D
    Eur Cell Mater; 2015 May; 29():250-66; discussion 266-7. PubMed ID: 25978114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering.
    Mobini S; Song YH; McCrary MW; Schmidt CE
    Biomaterials; 2019 Apr; 198():146-166. PubMed ID: 29880219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Bioreactors to Improve Functionality of Bone Tissue Engineering Constructs: A Systematic Review.
    Nokhbatolfoghahaei H; Rad MR; Khani MM; Shahriari S; Nadjmi N; Khojasteh A
    Curr Stem Cell Res Ther; 2017; 12(7):564-599. PubMed ID: 28828969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico multi-scale model of transport and dynamic seeding in a bone tissue engineering perfusion bioreactor.
    Spencer TJ; Hidalgo-Bastida LA; Cartmell SH; Halliday I; Care CM
    Biotechnol Bioeng; 2013 Apr; 110(4):1221-30. PubMed ID: 23124479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Bioreactor Culture of High Volume Engineered Bone Tissue.
    Nguyen BN; Ko H; Moriarty RA; Etheridge JM; Fisher JP
    Tissue Eng Part A; 2016 Feb; 22(3-4):263-71. PubMed ID: 26653703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro three-dimensional bone tissue models: from cells to controlled and dynamic environment.
    Bouet G; Marchat D; Cruel M; Malaval L; Vico L
    Tissue Eng Part B Rev; 2015 Feb; 21(1):133-56. PubMed ID: 25116032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone.
    Volkmer E; Drosse I; Otto S; Stangelmayer A; Stengele M; Kallukalam BC; Mutschler W; Schieker M
    Tissue Eng Part A; 2008 Aug; 14(8):1331-40. PubMed ID: 18601588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioreactor systems for bone tissue engineering.
    Rauh J; Milan F; Günther KP; Stiehler M
    Tissue Eng Part B Rev; 2011 Aug; 17(4):263-80. PubMed ID: 21495897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 96-well microplate bioreactor platform supporting individual dual perfusion and high-throughput assessment of simple or biofabricated 3D tissue models.
    Parrish J; Lim KS; Baer K; Hooper GJ; Woodfield TBF
    Lab Chip; 2018 Sep; 18(18):2757-2775. PubMed ID: 30117514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors.
    Jungreuthmayer C; Donahue SW; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Tissue Eng Part A; 2009 May; 15(5):1141-9. PubMed ID: 18831686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of simulation techniques for dynamic bone tissue engineering in bioreactors.
    Vetsch JR; Müller R; Hofmann S
    J Tissue Eng Regen Med; 2015 Aug; 9(8):903-17. PubMed ID: 23625691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.