BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 31531968)

  • 21. 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip.
    Yoon No D; Lee KH; Lee J; Lee SH
    Lab Chip; 2015 Oct; 15(19):3822-37. PubMed ID: 26279012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic role of perfusion culture on bone regeneration.
    Birru B; Mekala NK; Parcha SR
    J Biosci; 2019 Mar; 44(1):. PubMed ID: 30837374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Research progress of in vivo bioreactor as vascularization strategies in bone tissue engineering].
    Zhang H; Han D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Sep; 28(9):1173-6. PubMed ID: 25509787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic Devices and Three Dimensional-Printing Strategies for in vitro Models of Bone.
    Maia FR; Reis RL; Correlo VM; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():1-14. PubMed ID: 32285361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.
    Lv Q; Nair L; Laurencin CT
    J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomimetic fetal rotation bioreactor for engineering bone tissues-Effect of cyclic strains on upregulation of osteogenic gene expression.
    Ravichandran A; Wen F; Lim J; Chong MSK; Chan JKY; Teoh SH
    J Tissue Eng Regen Med; 2018 Apr; 12(4):e2039-e2050. PubMed ID: 29314764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Industrialization of a perfusion bioreactor: Prime example of a non-straightforward process.
    Talò G; Turrisi C; Arrigoni C; Recordati C; Gerges I; Tamplenizza M; Cappelluti A; Riboldi SA; Moretti M
    J Tissue Eng Regen Med; 2018 Feb; 12(2):405-415. PubMed ID: 28513101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perfusion enhances solute transfer into the shell of hollow fiber membrane bioreactors for bone tissue engineering.
    De Napoli IE; Catapano G
    Int J Artif Organs; 2010 Jun; 33(6):381-91. PubMed ID: 20669143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioreactors for bone tissue engineering.
    El Haj AJ; Cartmell SH
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1523-32. PubMed ID: 21287835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flow rates in perfusion bioreactors to maximise mineralisation in bone tissue engineering in vitro.
    Zhao F; van Rietbergen B; Ito K; Hofmann S
    J Biomech; 2018 Oct; 79():232-237. PubMed ID: 30149981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress.
    Yeatts AB; Fisher JP
    Bone; 2011 Feb; 48(2):171-81. PubMed ID: 20932947
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering.
    Zhang ZY; Teoh SH; Teo EY; Khoon Chong MS; Shin CW; Tien FT; Choolani MA; Chan JK
    Biomaterials; 2010 Nov; 31(33):8684-95. PubMed ID: 20739062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large Animal Models of an In Vivo Bioreactor for Engineering Vascularized Bone.
    Akar B; Tatara AM; Sutradhar A; Hsiao HY; Miller M; Cheng MH; Mikos AG; Brey EM
    Tissue Eng Part B Rev; 2018 Aug; 24(4):317-325. PubMed ID: 29471732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microcarriers in the engineering of cartilage and bone.
    Malda J; Frondoza CG
    Trends Biotechnol; 2006 Jul; 24(7):299-304. PubMed ID: 16678291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioreactor cultivation of osteochondral grafts.
    Vunjak-Novakovic G; Meinel L; Altman G; Kaplan D
    Orthod Craniofac Res; 2005 Aug; 8(3):209-18. PubMed ID: 16022723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extended-term culture of bone cells in a compartmentalized bioreactor.
    Dhurjati R; Liu X; Gay CV; Mastro AM; Vogler EA
    Tissue Eng; 2006 Nov; 12(11):3045-54. PubMed ID: 17518620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical strain using 2D and 3D bioreactors induces osteogenesis: implications for bone tissue engineering.
    van Griensven M; Diederichs S; Roeker S; Boehm S; Peterbauer A; Wolbank S; Riechers D; Stahl F; Kasper C
    Adv Biochem Eng Biotechnol; 2009; 112():95-123. PubMed ID: 19290499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro.
    Cartmell SH; Porter BD; García AJ; Guldberg RE
    Tissue Eng; 2003 Dec; 9(6):1197-203. PubMed ID: 14670107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro localization of bone growth factors in constructs of biodegradable scaffolds seeded with marrow stromal cells and cultured in a flow perfusion bioreactor.
    Gomes ME; Bossano CM; Johnston CM; Reis RL; Mikos AG
    Tissue Eng; 2006 Jan; 12(1):177-88. PubMed ID: 16499454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multicompartmental Hollow-Fiber-Based Bioreactors for Dynamic Three-Dimensional Perfusion Culture.
    Schmelzer E; Gerlach JC
    Methods Mol Biol; 2016; 1502():1-19. PubMed ID: 27075977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.