These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 31532062)
1. Combinatorial modulation of initial codons for improved zeaxanthin synthetic pathway efficiency in Escherichia coli. Wu Z; Zhao D; Li S; Wang J; Bi C; Zhang X Microbiologyopen; 2019 Dec; 8(12):e930. PubMed ID: 31532062 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of Escherichia coli to produce zeaxanthin. Li XR; Tian GQ; Shen HJ; Liu JZ J Ind Microbiol Biotechnol; 2015 Apr; 42(4):627-36. PubMed ID: 25533633 [TBL] [Abstract][Full Text] [Related]
3. Manipulating the position of DNA expression cassettes using location tags fused to dCas9 (Cas9-Lag) to improve metabolic pathway efficiency. Xie Q; Li S; Zhao D; Ye L; Li Q; Zhang X; Zhu L; Bi C Microb Cell Fact; 2020 Dec; 19(1):229. PubMed ID: 33317552 [TBL] [Abstract][Full Text] [Related]
4. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis. Shen HJ; Cheng BY; Zhang YM; Tang L; Li Z; Bu YF; Li XR; Tian GQ; Liu JZ Metab Eng; 2016 Nov; 38():180-190. PubMed ID: 27474352 [TBL] [Abstract][Full Text] [Related]
5. Pathway engineering for efficient biosynthesis of violaxanthin in Escherichia coli. Takemura M; Kubo A; Higuchi Y; Maoka T; Sahara T; Yaoi K; Ohdan K; Umeno D; Misawa N Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9393-9399. PubMed ID: 31673744 [TBL] [Abstract][Full Text] [Related]
6. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering. Yu JH; Zhu LW; Xia ST; Li HM; Tang YL; Liang XH; Chen T; Tang YJ Biotechnol Bioeng; 2016 Jul; 113(7):1531-41. PubMed ID: 26724788 [TBL] [Abstract][Full Text] [Related]
7. Production of lycopene by metabolically-engineered Escherichia coli. Sun T; Miao L; Li Q; Dai G; Lu F; Liu T; Zhang X; Ma Y Biotechnol Lett; 2014 Jul; 36(7):1515-22. PubMed ID: 24806808 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Nishizaki T; Tsuge K; Itaya M; Doi N; Yanagawa H Appl Environ Microbiol; 2007 Feb; 73(4):1355-61. PubMed ID: 17194842 [TBL] [Abstract][Full Text] [Related]
9. Multiplex iterative plasmid engineering for combinatorial optimization of metabolic pathways and diversification of protein coding sequences. Li Y; Gu Q; Lin Z; Wang Z; Chen T; Zhao X ACS Synth Biol; 2013 Nov; 2(11):651-61. PubMed ID: 24041030 [TBL] [Abstract][Full Text] [Related]
10. Engineering CrtW and CrtZ for improving biosynthesis of astaxanthin in Escherichia coli. Li D; Li Y; Xu JY; Li QY; Tang JL; Jia SR; Bi CH; Dai ZB; Zhu XN; Zhang XL Chin J Nat Med; 2020 Sep; 18(9):666-676. PubMed ID: 32928510 [TBL] [Abstract][Full Text] [Related]
11. Optimizing the downstream MVA pathway using a combination optimization strategy to increase lycopene yield in Escherichia coli. Cheng T; Wang L; Sun C; Xie C Microb Cell Fact; 2022 Jun; 21(1):121. PubMed ID: 35718767 [TBL] [Abstract][Full Text] [Related]
12. [Construction of high-yield strain by optimizing lycopene cyclase for β-carotene production]. Jin Y; Han L; Zhang S; Li S; Liu W; Tao Y Sheng Wu Gong Cheng Xue Bao; 2017 Nov; 33(11):1814-1826. PubMed ID: 29202518 [TBL] [Abstract][Full Text] [Related]
13. Biosensor-Based Multigene Pathway Optimization for Enhancing the Production of Glycolate. Xu S; Zhang L; Zhou S; Deng Y Appl Environ Microbiol; 2021 May; 87(12):e0011321. PubMed ID: 33837017 [TBL] [Abstract][Full Text] [Related]
14. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway. Zhu X; Zhao D; Qiu H; Fan F; Man S; Bi C; Zhang X Metab Eng; 2017 Sep; 43(Pt A):37-45. PubMed ID: 28800965 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Matthews PD; Wurtzel ET Appl Microbiol Biotechnol; 2000 Apr; 53(4):396-400. PubMed ID: 10803894 [TBL] [Abstract][Full Text] [Related]
16. Engineering of Escherichia coli for Lycopene Production Through Promoter Engineering. Shen HJ; Hu JJ; Li XR; Liu JZ Curr Pharm Biotechnol; 2015; 16(12):1094-103. PubMed ID: 26238682 [TBL] [Abstract][Full Text] [Related]
17. Pathway optimization by re-design of untranslated regions for L-tyrosine production in Escherichia coli. Kim SC; Min BE; Hwang HG; Seo SW; Jung GY Sci Rep; 2015 Sep; 5():13853. PubMed ID: 26346938 [TBL] [Abstract][Full Text] [Related]
18. Type IIs restriction based combinatory modulation technique for metabolic pathway optimization. Ye L; He P; Li Q; Zhang X; Bi C Microb Cell Fact; 2017 Mar; 16(1):47. PubMed ID: 28302121 [TBL] [Abstract][Full Text] [Related]
19. One step DNA assembly for combinatorial metabolic engineering. Coussement P; Maertens J; Beauprez J; Van Bellegem W; De Mey M Metab Eng; 2014 May; 23():70-7. PubMed ID: 24594279 [TBL] [Abstract][Full Text] [Related]
20. Stepwise pathway engineering to the biosynthesis of zeaxanthin, astaxanthin and capsanthin in rice endosperm. Ha SH; Kim JK; Jeong YS; You MK; Lim SH; Kim JK Metab Eng; 2019 Mar; 52():178-189. PubMed ID: 30503392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]