These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31532079)

  • 21. Oral-aboral identity displayed in the expression of HpHox3 and HpHox11/13 in the adult rudiment of the sea urchin Holopneustes purpurescens.
    Morris VB; Byrne M
    Dev Genes Evol; 2014 Feb; 224(1):1-11. PubMed ID: 24129745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Postembryonic segregation of the germ line in sea urchins in relation to indirect development.
    Ransick A; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6759-63. PubMed ID: 8692891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transforming growth factor-β signal regulates gut bending in the sea urchin embryo.
    Suzuki H; Yaguchi S
    Dev Growth Differ; 2018 May; 60(4):216-225. PubMed ID: 29878318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micromere-derived signal regulates larval left-right polarity during sea urchin development.
    Kitazawa C; Amemiya S
    J Exp Zool A Ecol Genet Physiol; 2007 May; 307(5):249-62. PubMed ID: 17351911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regeneration of the germline in the annelid Capitella teleta.
    Dannenberg LC; Seaver EC
    Dev Biol; 2018 Aug; 440(2):74-87. PubMed ID: 29758179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of larval and adult skeletogenic cells in developing sea urchin larvae.
    Yajima M; Kiyomoto M
    Biol Bull; 2006 Oct; 211(2):183-92. PubMed ID: 17062877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phylogenetic analyses of mode of larval development.
    Hart M
    Semin Cell Dev Biol; 2000 Dec; 11(6):411-8. PubMed ID: 11145869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea).
    Rahman MA; Yusoff FM; Arshad A; Shamsudin MN; Amin SM
    ScientificWorldJournal; 2012; 2012():938482. PubMed ID: 23055824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fertilization of sea urchin eggs in space and subsequent development under normal conditions.
    Marthy HJ; Schatt P; Santella L
    Adv Space Res; 1994; 14(8):197-208. PubMed ID: 11537918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of nervous systems to metamorphosis in feeding and non-feeding echinoid larvae, the transition from bilateral to radial symmetry.
    Katow H; Elia L; Byrne M
    Dev Genes Evol; 2009 Feb; 219(2):67-77. PubMed ID: 19031082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Use of Larval Sea Stars and Sea Urchins in the Discovery of Shared Mechanisms of Metazoan Whole-Body Regeneration.
    Wolff A; Hinman V
    Genes (Basel); 2021 Jul; 12(7):. PubMed ID: 34356079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants.
    Minokawa T; Amemiya S
    Dev Growth Differ; 1999 Oct; 41(5):535-47. PubMed ID: 10545026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites.
    Lamare MD; Liddy M; Uthicke S
    Proc Biol Sci; 2016 Nov; 283(1843):. PubMed ID: 27903867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos.
    Takata H; Kominami T
    Zoolog Sci; 2004 Oct; 21(10):1025-35. PubMed ID: 15514472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of yolk platelets and yolk glycoproteins during larval development of the sea urchin embryo.
    Scott LB; Leahy PS; Decker GL; Lennarz WJ
    Dev Biol; 1990 Feb; 137(2):368-77. PubMed ID: 2303167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos.
    Ishizuka Y; Minokawa T; Amemiya S
    Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pattern formation during gastrulation in the sea urchin embryo.
    McClay DR; Armstrong NA; Hardin J
    Dev Suppl; 1992; ():33-41. PubMed ID: 1299366
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Larval development and metamorphosis of the deep-sea cidaroid urchin Cidaris blakei.
    Bennett KC; Young CM; Emlet RB
    Biol Bull; 2012 Apr; 222(2):105-17. PubMed ID: 22589401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of temperature on the embryonic and early larval development in tropical species of black sea urchin, Diadema setosum (Leske, 1778).
    Sarifudin M; Rahman MA; Yusoff FM; Arshad A; Tan SG
    J Environ Biol; 2016 Jul; 37(4 Spec No):657-68. PubMed ID: 28779724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early development of coelomic structures in an echinoderm larva and a similarity with coelomic structures in a chordate embryo.
    Morris VB
    Dev Genes Evol; 2012 Nov; 222(6):313-23. PubMed ID: 23001286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.