BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31532187)

  • 1. Tubular Network Formation by Mixing Amphiphilic Polypeptides with Differing Hydrophilic Blocks.
    Rahman MM; Ueda M; Son K; Seo S; Takeoka S; Hirose T; Ito Y
    Biomacromolecules; 2019 Oct; 20(10):3908-3914. PubMed ID: 31532187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tubular Assembly Formation Induced by Leucine Alignment along the Hydrophobic Helix of Amphiphilic Polypeptides.
    Abosheasha MA; Itagaki T; Ito Y; Ueda M
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide flat-rod formation by precise arrangement among enantiomeric hydrophobic helices.
    Itagaki T; Ito Y; Ueda M
    J Colloid Interface Sci; 2022 Jul; 617():129-135. PubMed ID: 35272166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the Viscoelasticity of Peptide Vesicles by Adjusting Hydrophobic Helical Blocks Comprising Amphiphilic Polypeptides.
    Kim CJ; Ueda M; Imai T; Sugiyama J; Kimura S
    Langmuir; 2017 Jun; 33(22):5423-5429. PubMed ID: 28493724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusion and fission of molecular assemblies of amphiphilic polypeptides generating small vesicles from nanotubes.
    Watabe N; Joo Kim C; Kimura S
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27353122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanotube and three-way nanotube formation with nonionic amphiphilic block peptides.
    Kanzaki T; Horikawa Y; Makino A; Sugiyama J; Kimura S
    Macromol Biosci; 2008 Nov; 8(11):1026-33. PubMed ID: 18604818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-Induced Phase Separation in Molecular Assembly of Nanotubes Comprising Amphiphilic Polypeptoid with Poly( N-ethyl glycine) in Water by a Hydrophilic-Region-Driven-Type Mechanism.
    Hattori T; Itagaki T; Uji H; Kimura S
    J Phys Chem B; 2018 Jul; 122(28):7178-7184. PubMed ID: 29924608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation-Sensitive Polymersomes Based on Amphiphilic Diblock Copolypeptoids.
    Deng Y; Chen H; Tao X; Cao F; Trépout S; Ling J; Li MH
    Biomacromolecules; 2019 Sep; 20(9):3435-3444. PubMed ID: 31361468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-Separated Molecular Assembly of a Nanotube Composed of Amphiphilic Polypeptides Having a Helical Hydrophobic Block.
    Itagaki T; Kurauchi S; Uebayashi T; Uji H; Kimura S
    ACS Omega; 2018 Jul; 3(7):7158-7164. PubMed ID: 31458878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor therapy.
    Zhu H; Chen Y; Yan FJ; Chen J; Tao XF; Ling J; Yang B; He QJ; Mao ZW
    Acta Biomater; 2017 Mar; 50():534-545. PubMed ID: 28027959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joining Nanotubes Comprising Nucleobase-carrying Amphiphilic Polypeptides.
    Itagaki T; Ueda Y; Itabashi K; Uji H; Kimura S
    Chimia (Aarau); 2018 Dec; 72(12):842-847. PubMed ID: 30648948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology control between twisted ribbon, helical ribbon, and nanotube self-assemblies with his-containing helical peptides in response to pH change.
    Uesaka A; Ueda M; Makino A; Imai T; Sugiyama J; Kimura S
    Langmuir; 2014 Feb; 30(4):1022-8. PubMed ID: 24410257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design of peptide nanotubes for varying diameters and lengths.
    Ueda M; Makino A; Imai T; Sugiyama J; Kimura S
    J Pept Sci; 2011 Feb; 17(2):94-9. PubMed ID: 21234980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PEG-amine-initiated polymerization of sarcosine N-thiocarboxyanhydrides toward novel double-hydrophilic PEG-b-polysarcosine diblock copolymers.
    Tao X; Deng C; Ling J
    Macromol Rapid Commun; 2014 May; 35(9):875-81. PubMed ID: 24668926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible transformation of peptide assembly between densified-polysarcosine-driven kinetically and helix-orientation-driven thermodynamically stable morphologies.
    Elafify MS; Itagaki T; Elkasabgy NA; Sayed S; Ito Y; Ueda M
    Biomater Sci; 2023 Sep; 11(18):6280-6286. PubMed ID: 37548917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progress on polySarcosine as an alternative to PEGylation: Synthesis and biomedical applications.
    Kabil MF; Azzazy HME; Nasr M
    Int J Pharm; 2024 Mar; 653():123871. PubMed ID: 38301810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of immunogenicity of poly(sarcosine) displayed on various nanoparticle surfaces due to different physical properties.
    Kim CJ; Hara E; Watabe N; Hara I; Kimura S
    J Pept Sci; 2017 Dec; 23(12):889-898. PubMed ID: 29110375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppressive immune response of poly-(sarcosine) chains in peptide-nanosheets in contrast to polymeric micelles.
    Hara E; Ueda M; Kim CJ; Makino A; Hara I; Ozeki E; Kimura S
    J Pept Sci; 2014 Jul; 20(7):570-7. PubMed ID: 24863398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ε-caprolactone)-block-polysarcosine by Ring-Opening Polymerization of Sarcosine N-Thiocarboxyanhydride: Synthesis and Thermoresponsive Self-Assembly.
    Deng Y; Zou T; Tao X; Semetey V; Trepout S; Marco S; Ling J; Li MH
    Biomacromolecules; 2015 Oct; 16(10):3265-74. PubMed ID: 26388179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemically prepared polysulfone/poly(ethylene glycol) amphiphilic networks and their biomolecule adsorption properties.
    Dizman C; Demirkol DO; Ates S; Torun L; Sakarya S; Timur S; Yagci Y
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):265-70. PubMed ID: 21783347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.