BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 31532401)

  • 1. Immobilized Candida antarctica lipase B catalyzed synthesis of biodegradable polymers for biomedical applications.
    Lu Y; Lv Q; Liu B; Liu J
    Biomater Sci; 2019 Nov; 7(12):4963-4983. PubMed ID: 31532401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilized Candida antarctica lipase B: Hydration, stripping off and application in ring opening polyester synthesis.
    Idris A; Bukhari A
    Biotechnol Adv; 2012; 30(3):550-63. PubMed ID: 22041165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyesters from Macrolactones Using Commercial Lipase NS 88011 and Novozym 435 as Biocatalysts.
    Polloni AE; Chiaradia V; Figura EM; De Paoli JP; de Oliveira D; de Oliveira JV; de Araujo PHH; Sayer C
    Appl Biochem Biotechnol; 2018 Feb; 184(2):659-672. PubMed ID: 28836123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization on octyl-agarose beads and some catalytic features of commercial preparations of lipase a from Candida antarctica (Novocor ADL): Comparison with immobilized lipase B from Candida antarctica.
    Arana-Peña S; Lokha Y; Fernández-Lafuente R
    Biotechnol Prog; 2019 Jan; 35(1):e2735. PubMed ID: 30341806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candida antarctica lipase B chemically immobilized on epoxy-activated micro- and nanobeads: catalysts for polyester synthesis.
    Chen B; Hu J; Miller EM; Xie W; Cai M; Gross RA
    Biomacromolecules; 2008 Feb; 9(2):463-71. PubMed ID: 18197630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green and selective polycondensation methods toward linear sorbitol-based polyesters: enzymatic versus organic and metal-based catalysis.
    Gustini L; Lavilla C; Janssen WW; Martínez de Ilarduya A; Muñoz-Guerra S; Koning CE
    ChemSusChem; 2016 Aug; 9(16):2250-60. PubMed ID: 27406029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipase-catalyzed synthesis of poly(amine-co-esters) via copolymerization of diester with amino-substituted diol.
    Jiang Z
    Biomacromolecules; 2010 Apr; 11(4):1089-93. PubMed ID: 20205448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novozym 435-Catalyzed Synthesis of Well-Defined Hyperbranched Aliphatic Poly(β-thioether ester).
    Wu WX; Liu Z
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32041136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyester coating of cellulose fiber surfaces catalyzed by a cellulose-binding module-Candida antarctica lipase B fusion protein.
    Gustavsson MT; Persson PV; Iversen T; Hult K; Martinelle M
    Biomacromolecules; 2004; 5(1):106-12. PubMed ID: 14715015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Developments and Optimization of Lipase-Catalyzed Lactone Formation and Ring-Opening Polymerization.
    Champagne E; Strandman S; Zhu XX
    Macromol Rapid Commun; 2016 Dec; 37(24):1986-2004. PubMed ID: 27805747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoenzymatic Synthesis of Nitrogen Polymers with Biomedical Applications Catalyzed by Lipases.
    Baldessari A; Liñares GG
    Methods Mol Biol; 2018; 1835():359-376. PubMed ID: 30109663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity and spatial distribution of Candida antarctica lipase B immobilized on macroporous organic polymeric adsorbents.
    Nielsen AV; Andric P; Nielsen PM; Pedersen LH
    Langmuir; 2014 May; 30(19):5429-34. PubMed ID: 24735165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalytic Route for the Synthesis of Oligoesters of Hydroxy-Fatty acids and ϵ-Caprolactone.
    Todea A; Aparaschivei D; Badea V; Boeriu CG; Peter F
    Biotechnol J; 2018 Jun; 13(6):e1700629. PubMed ID: 29542861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring mild enzymatic sustainable routes for the synthesis of bio-degradable aromatic-aliphatic oligoesters.
    Pellis A; Guarneri A; Brandauer M; Acero EH; Peerlings H; Gardossi L; Guebitz GM
    Biotechnol J; 2016 May; 11(5):642-7. PubMed ID: 26762794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational enhancement of enzyme-catalyzed enantioselective reaction by construction of recombinant enzymes based on additive strategy.
    Han Y; Zhou X; Zheng L
    Bioprocess Biosyst Eng; 2019 Nov; 42(11):1739-1746. PubMed ID: 31321527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization and stabilization of lipase (CaLB) through hierarchical interfacial assembly.
    Talbert JN; Wang LS; Duncan B; Jeong Y; Andler SM; Rotello VM; Goddard JM
    Biomacromolecules; 2014 Nov; 15(11):3915-22. PubMed ID: 25252004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of ascorbyl oleate by transesterification of olive oil with ascorbic acid in polar organic media catalyzed by immobilized lipases.
    Moreno-Perez S; Filice M; Guisan JM; Fernandez-Lorente G
    Chem Phys Lipids; 2013 Sep; 174():48-54. PubMed ID: 23891831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethyl Butyrate Synthesis Catalyzed by Lipases A and B from
    Monteiro RRC; Neto DMA; Fechine PBA; Lopes AAS; Gonçalves LRB; Dos Santos JCS; de Souza MCM; Fernandez-Lafuente R
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31752306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemoenzymatic lignin valorization: Production of epoxidized pre-polymers using Candida antarctica lipase B.
    Vásquez-Garay F; Teixeira Mendonça R; Peretti SW
    Enzyme Microb Technol; 2018 May; 112():6-13. PubMed ID: 29499782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization and modelling of enzymatic polymerization of ε-caprolactone to polycaprolactone using Candida Antartica Lipase B with response surface methodology and artificial neural network.
    Pakalapati H; Tariq MA; Arumugasamy SK
    Enzyme Microb Technol; 2019 Mar; 122():7-18. PubMed ID: 30638510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.