These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31532434)

  • 41. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hierarchically Nanoporous Pyropolymers Derived from Waste Pinecone as a Pseudocapacitive Electrode for Lithium Ion Hybrid Capacitors.
    Hyun JC; Kwak JH; Lee SM; Choi J; Lee KT; Yun YS
    Sci Rep; 2020 Apr; 10(1):5817. PubMed ID: 32242072
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent progress in sodium/potassium hybrid capacitors.
    Yuan J; Hu X; Liu Y; Zhong G; Yu B; Wen Z
    Chem Commun (Camb); 2020 Nov; 56(90):13933-13949. PubMed ID: 33111735
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Substantial Na-Ion Storage at High Current Rates: Redox-Pseudocapacitance through Sodium Oxide Formation.
    Portenkirchner E
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500888
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Realization of Lithium-Ion Capacitors with Enhanced Energy Density via the Use of Gadolinium Hexacyanocobaltate as a Cathode Material.
    Zhang K; Lee TH; Noh H; Islamoglu T; Farha OK; Jang HW; Choi JW; Shokouhimehr M
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31799-31805. PubMed ID: 31390172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pseudocapacitive behavior of the Fe
    Xiang Y; Yang Z; Wang S; Hossain MSA; Yu J; Kumar NA; Yamauchi Y
    Nanoscale; 2018 Sep; 10(37):18010-18018. PubMed ID: 30226510
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Na(+) intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling.
    Chen C; Wen Y; Hu X; Ji X; Yan M; Mai L; Hu P; Shan B; Huang Y
    Nat Commun; 2015 Apr; 6():6929. PubMed ID: 25906991
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A COF-Like N-Rich Conjugated Microporous Polytriphenylamine Cathode with Pseudocapacitive Anion Storage Behavior for High-Energy Aqueous Zinc Dual-Ion Batteries.
    Zhang H; Zhong L; Xie J; Yang F; Liu X; Lu X
    Adv Mater; 2021 Aug; 33(34):e2101857. PubMed ID: 34259360
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Emerging Potassium-ion Hybrid Capacitors.
    Liu M; Chang L; Le Z; Jiang J; Li J; Wang H; Zhao C; Xu T; Nie P; Wang L
    ChemSusChem; 2020 Nov; 13(22):5837-5862. PubMed ID: 32875750
    [TBL] [Abstract][Full Text] [Related]  

  • 51. a-MoS
    Zhang Y; Chen D; Li X; Shen J; Chen Z; Cao SA; Li T; Xu F
    Nanoscale; 2019 Aug; 11(34):16043-16051. PubMed ID: 31432853
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sodium storage in a promising MoS
    Wang R; Wang S; Zhang Y; Jin D; Tao X; Zhang L
    Nanoscale; 2018 Jun; 10(23):11165-11175. PubMed ID: 29873377
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent Progress in Rechargeable Sodium-Ion Batteries: toward High-Power Applications.
    Pu X; Wang H; Zhao D; Yang H; Ai X; Cao S; Chen Z; Cao Y
    Small; 2019 Aug; 15(32):e1805427. PubMed ID: 30773812
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.
    Yoo SJ; Evanko B; Wang X; Romelczyk M; Taylor A; Ji X; Boettcher SW; Stucky GD
    J Am Chem Soc; 2017 Jul; 139(29):9985-9993. PubMed ID: 28696675
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi
    Jagadale A; Zhou X; Blaisdell D; Yang S
    Sci Rep; 2018 Jan; 8(1):1602. PubMed ID: 29371664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanostructured Na
    Bhat SSM; Babu B; Feygenson M; Neuefeind JC; Shaijumon MM
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):437-447. PubMed ID: 29244481
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pseudocapacitive Characteristics of Low-Carbon Silicon Oxycarbide for Lithium-Ion Capacitors.
    Halim M; Liu G; Ardhi REA; Hudaya C; Wijaya O; Lee SH; Kim AY; Lee JK
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20566-20576. PubMed ID: 28557417
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design.
    Liu J; Wang J; Xu C; Jiang H; Li C; Zhang L; Lin J; Shen ZX
    Adv Sci (Weinh); 2018 Jan; 5(1):1700322. PubMed ID: 29375964
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A High-Performance Lithium-Ion Capacitor Based on 2D Nanosheet Materials.
    Li S; Chen J; Cui M; Cai G; Wang J; Cui P; Gong X; Lee PS
    Small; 2017 Feb; 13(6):. PubMed ID: 27893190
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.
    Sun F; Gao J; Zhu Y; Pi X; Wang L; Liu X; Qin Y
    Sci Rep; 2017 Feb; 7():40990. PubMed ID: 28155853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.