These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31532605)

  • 41. Three-Dimensional Porous h-BC
    Li L; Li X; Li X; Chen H; Liu H; Chen J; Zhang Y
    J Phys Chem Lett; 2022 Mar; 13(10):2348-2355. PubMed ID: 35254063
    [TBL] [Abstract][Full Text] [Related]  

  • 42. First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber.
    Cho JS; Lee SY; Kang YC
    Sci Rep; 2016 Mar; 6():23338. PubMed ID: 26997350
    [TBL] [Abstract][Full Text] [Related]  

  • 43. First-principles study of a 2-dimensional C-silicyne monolayer as a promising anode in Na/K ion secondary batteries.
    Yadav N; Chakraborty B; Dhilip Kumar TJ
    Phys Chem Chem Phys; 2021 May; 23(20):11755-11763. PubMed ID: 33982721
    [TBL] [Abstract][Full Text] [Related]  

  • 44. All Carbon Dual Ion Batteries.
    Hu Z; Liu Q; Zhang K; Zhou L; Li L; Chen M; Tao Z; Kang YM; Mai L; Chou SL; Chen J; Dou SX
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):35978-35983. PubMed ID: 30207686
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FeP/C Composites as an Anode Material for K-Ion Batteries.
    Li W; Yan B; Fan H; Zhang C; Xu H; Cheng X; Li Z; Jia G; An S; Qiu X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22364-22370. PubMed ID: 31187615
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Atomic-Scale Dynamics and Storage Performance of Na/K on FeF
    Zhao S; Li Y; Yang Z; Wang X; Shi X
    ACS Appl Mater Interfaces; 2019 May; 11(19):17425-17434. PubMed ID: 31002235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ab Initio Prediction and Characterization of Mo2C Monolayer as Anodes for Lithium-Ion and Sodium-Ion Batteries.
    Sun Q; Dai Y; Ma Y; Jing T; Wei W; Huang B
    J Phys Chem Lett; 2016 Mar; 7(6):937-43. PubMed ID: 26905961
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorene as an anode material for Na-ion batteries: a first-principles study.
    Kulish VV; Malyi OI; Persson C; Wu P
    Phys Chem Chem Phys; 2015 Jun; 17(21):13921-8. PubMed ID: 25947542
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Potassium Dual-Ion Hybrid Batteries with Ultrahigh Rate Performance and Excellent Cycling Stability.
    Ding X; Zhang F; Ji B; Liu Y; Li J; Lee CS; Tang Y
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42294-42300. PubMed ID: 30451488
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Superior Potassium Ion Storage via Vertical MoS
    Xie K; Yuan K; Li X; Lu W; Shen C; Liang C; Vajtai R; Ajayan P; Wei B
    Small; 2017 Nov; 13(42):. PubMed ID: 28941005
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries.
    Han C; Han K; Wang X; Wang C; Li Q; Meng J; Xu X; He Q; Luo W; Wu L; Mai L
    Nanoscale; 2018 Apr; 10(15):6820-6826. PubMed ID: 29595204
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scalable Synthesis Nano-Perovskite K(Mn
    Wang S; Cui B; Zhuang Q; Shi Y; Zheng H
    Nanoscale Res Lett; 2019 Jul; 14(1):238. PubMed ID: 31312910
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NASICON-Structured NaTi2(PO4)3@C Nanocomposite as the Low Operation-Voltage Anode Material for High-Performance Sodium-Ion Batteries.
    Wang D; Liu Q; Chen C; Li M; Meng X; Bie X; Wei Y; Huang Y; Du F; Wang C; Chen G
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2238-46. PubMed ID: 26720111
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reticular V
    Tian B; Tang W; Su C; Li Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):642-650. PubMed ID: 29256595
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two-Dimensional Penta-BN
    Zhang T; Ma Y; Huang B; Dai Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6104-6110. PubMed ID: 30648381
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low-Cost K
    Pei Y; Mu C; Li H; Li F; Chen J
    ChemSusChem; 2018 Apr; 11(8):1285-1289. PubMed ID: 29498226
    [TBL] [Abstract][Full Text] [Related]  

  • 57. State-of-the-art anodes of potassium-ion batteries: synthesis, chemistry, and applications.
    Li P; Kim H; Kim KH; Kim J; Jung HG; Sun YK
    Chem Sci; 2021 May; 12(22):7623-7655. PubMed ID: 34168818
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering Hollow Carbon Architecture for High-Performance K-Ion Battery Anode.
    Bin DS; Lin XJ; Sun YG; Xu YS; Zhang K; Cao AM; Wan LJ
    J Am Chem Soc; 2018 Jun; 140(23):7127-7134. PubMed ID: 29771119
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation of two-dimensional hf-based MXenes as the anode materials for li/na-ion batteries: A DFT study.
    Yang Z; Zheng Y; Li W; Zhang J
    J Comput Chem; 2019 May; 40(13):1352-1359. PubMed ID: 30776141
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hexa-cata-hexabenzocoronene nanographene as a promising anode material for Mg-ion batteries.
    Hashemzadeh B; Edjlali L; Kheirollahi Nezhad PD; Vessally E
    J Mol Model; 2021 Jan; 27(2):45. PubMed ID: 33484343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.