BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31532686)

  • 1. Droplet Core Intermolecular Interactions and Block Copolymer Composition Heavily Influence Oil-In-Water Nanoemulsion Stability.
    Barres AR; Molugu SK; Stewart PL; Mecozzi S
    Langmuir; 2019 Oct; 35(39):12765-12772. PubMed ID: 31532686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs.
    Mohamadi Saani S; Abdolalizadeh J; Zeinali Heris S
    Ultrason Sonochem; 2019 Jul; 55():86-95. PubMed ID: 31084795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulation of lycopene within oil-in-water nanoemulsions using lactoferrin: Impact of carrier oils on physicochemical stability and bioaccessibility.
    Zhao C; Wei L; Yin B; Liu F; Li J; Liu X; Wang J; Wang Y
    Int J Biol Macromol; 2020 Jun; 153():912-920. PubMed ID: 32169453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor.
    Sarheed O; Shouqair D; Ramesh KVRNS; Khaleel T; Amin M; Boateng J; Drechsler M
    Int J Pharm; 2020 Feb; 576():118952. PubMed ID: 31843549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Emulsion and Nanoemulsion Delivery Systems: The Chemical Stability of Curcumin Decreases as Oil Droplet Size Decreases.
    Kharat M; Aberg J; Dai T; McClements DJ
    J Agric Food Chem; 2020 Aug; 68(34):9205-9212. PubMed ID: 32786867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multicompartment Theranostic Nanoemulsions Stabilized by a Triphilic Semifluorinated Block Copolymer.
    Barres AR; Wimmer MR; Mecozzi S
    Mol Pharm; 2017 Nov; 14(11):3916-3926. PubMed ID: 28945386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Temperature, Oil Type, and Copolymer Concentration on the Long-Term Stability of Oil-in-Water Pickering Nanoemulsions Prepared Using Diblock Copolymer Nanoparticles.
    Hunter SJ; Chohan P; Varlas S; Armes SP
    Langmuir; 2024 Feb; 40(7):3702-14. PubMed ID: 38316052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-droplet force between magnetically polarizable Pickering oil-in-water nanoemulsions stabilized with γ-Al
    Nandy M; Lahiri BB; Philip J
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1671-1686. PubMed ID: 34592554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a kojic monooleate-enriched oil-in-water nanoemulsion as a potential carrier for hyperpigmentation treatment.
    Syed Azhar SNA; Ashari SE; Salim N
    Int J Nanomedicine; 2018; 13():6465-6479. PubMed ID: 30410332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly stable concentrated nanoemulsions by the phase inversion composition method at elevated temperature.
    Yu L; Li C; Xu J; Hao J; Sun D
    Langmuir; 2012 Oct; 28(41):14547-52. PubMed ID: 22985401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile methodology of nanoemulsion preparation using oily polymer for the delivery of poorly soluble drugs.
    Wik J; Bansal KK; Assmuth T; Rosling A; Rosenholm JM
    Drug Deliv Transl Res; 2020 Oct; 10(5):1228-1240. PubMed ID: 31858441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oil-in-water nanoemulsions for pesticide formulations.
    Wang L; Li X; Zhang G; Dong J; Eastoe J
    J Colloid Interface Sci; 2007 Oct; 314(1):230-5. PubMed ID: 17612555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Study of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles.
    Day RA; Estabrook DA; Wu C; Chapman JO; Togle AJ; Sletten EM
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):38887-38898. PubMed ID: 32706233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formulation and characterization of water-in-oil nanoemulsions loaded with açaí berry anthocyanins: Insights of degradation kinetics and stability evaluation of anthocyanins and nanoemulsions.
    Rabelo CAS; Taarji N; Khalid N; Kobayashi I; Nakajima M; Neves MA
    Food Res Int; 2018 Apr; 106():542-548. PubMed ID: 29579959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-color fluorescent (near-infrared and visible) triphasic perfluorocarbon nanoemuslions.
    Patel SK; Patrick MJ; Pollock JA; Janjic JM
    J Biomed Opt; 2013 Oct; 18(10):101312. PubMed ID: 23912666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymeric micelles and nanoemulsions as drug carriers: Therapeutic efficacy, toxicity, and drug resistance.
    Gupta R; Shea J; Scafe C; Shurlygina A; Rapoport N
    J Control Release; 2015 Aug; 212():70-7. PubMed ID: 26091919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and characterization of the formation of oil-in-water diazinon nanoemulsions: Modeling and influence of the oil phase, surfactant and sonication.
    Badawy MEI; Saad ASA; Tayeb EHM; Mohammed SA; Abd-Elnabi AD
    J Environ Sci Health B; 2017 Dec; 52(12):896-911. PubMed ID: 29111904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability Studies and Characterization of Glutathione-Loaded Nanoemulsion.
    Khan NU; Ali A; Khan H; Khan ZU; Ahmed Z
    J Cosmet Sci; 2018; 69(4):257-267. PubMed ID: 30311901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Use of Different Commercial Mineral Water Brands to Produce Oil-In-Water Nanoemulsions.
    Rocha-Filho PA; Monteiro AD; Agostinho LC; Oliveira MPA
    Molecules; 2020 Jan; 25(3):. PubMed ID: 32019189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple linear regression applied to predicting droplet size of complex perfluorocarbon nanoemulsions for biomedical applications.
    Lambert E; Janjic JM
    Pharm Dev Technol; 2019 Jul; 24(6):700-710. PubMed ID: 30724654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.