These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31532895)

  • 1. Ultrahigh Rate Performance of Hollow Antimony Nanoparticles Impregnated in Open Carbon Boxes for Sodium-Ion Battery under Elevated Temperature.
    Xu A; Xia Q; Zhang S; Duan H; Yan Y; Wu S
    Small; 2019 Nov; 15(45):e1903521. PubMed ID: 31532895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimony nanocrystals self-encapsulated within bio-oil derived carbon for ultra-stable sodium storage.
    Qin B; Jia H; Cai Y; Li M; Qi J; Cao J; Feng J
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):459-466. PubMed ID: 32911394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimony Nanorod Encapsulated in Cross-Linked Carbon for High-Performance Sodium Ion Battery Anodes.
    Cui C; Xu J; Zhang Y; Wei Z; Mao M; Lian X; Wang S; Yang C; Fan X; Ma J; Wang C
    Nano Lett; 2019 Jan; 19(1):538-544. PubMed ID: 30550291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes.
    Qiu S; Wu X; Xiao L; Ai X; Yang H; Cao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1337-43. PubMed ID: 26710079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexagonal Sb Nanocrystals as High-Capacity and Long-Cycle Anode Materials for Sodium-Ion Batteries.
    Zhang N; Chen X; Xu J; He P; Ding X
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26728-26736. PubMed ID: 37218657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen doped porous carbon coated antimony as high performance anode material for sodium-ion batteries.
    Luo X; Tan H; Ma T; Wang H; Lv M; Yu Z; Fu C; Chang X; Jin S
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33848983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of electrochemical behavior of Sb-based porous carbon composites anode for sodium-ion batteries.
    Ma G; Xu C; Zhang D; Che S; Wang Y; Yang J; Chen K; Sun Y; Liu S; Fu J; Zhou Z; Qu Y; Ding C; Li Y
    J Colloid Interface Sci; 2024 Nov; 673():26-36. PubMed ID: 38870665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries.
    Wang D; Yu Y; He H; Wang J; Zhou W; Abruña HD
    ACS Nano; 2015 Feb; 9(2):1775-81. PubMed ID: 25602513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of nickel-doped Co
    Zhou H; Cao Y; Ma Z; Li S
    Nanotechnology; 2018 May; 29(19):195201. PubMed ID: 29465413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design of Sb@C@TiO
    Kong M; Liu Y; Zhou B; Yang K; Tang J; Zhang P; Zhang WH
    Small; 2020 Oct; 16(43):e2001976. PubMed ID: 32985102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Organic Framework Derived Porous Hollow Co
    Kang W; Zhang Y; Fan L; Zhang L; Dai F; Wang R; Sun D
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10602-10609. PubMed ID: 28287697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alloyed BiSb Nanoparticles Confined in Tremella-Like Carbon Microspheres for Ultralong-Life Potassium Ion Batteries.
    Huang C; Xu A; Li G; Sun H; Wu S; Xu Z; Yan Y
    Small; 2021 Jun; 17(23):e2100685. PubMed ID: 33908704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bismuth-Antimony Alloy Nanoparticle@Porous Carbon Nanosheet Composite Anode for High-Performance Potassium-Ion Batteries.
    Xiong P; Wu J; Zhou M; Xu Y
    ACS Nano; 2020 Jan; 14(1):1018-1026. PubMed ID: 31860268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemically Engineering Antimony Interspersed on Graphene toward Advanced Sodium-Storage Anodes.
    Shuai H; Liu H; Li J; Fang S; Xu L; Yang Y; Hou H; Zou G; Hu J; Ji X
    Inorg Chem; 2021 Aug; 60(16):12526-12535. PubMed ID: 34337950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.
    Edison E; Sreejith S; Madhavi S
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39399-39406. PubMed ID: 29090906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting Sodium-Ion Storage by Encapsulating NiS (CoS) Hollow Nanoparticles into Carbonaceous Fibers.
    Zhang Y; Lv C; Wang X; Chen S; Li D; Peng Z; Yang D
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40531-40539. PubMed ID: 30379528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafine antimony (Sb) nanoparticles encapsulated into a carbon microfiber framework as an excellent LIB anode with a superlong life of more than 5000 cycles.
    Wang W; Xu J; Xu Z; Zheng W; Wang Y; Jia Y; Ma J; Wang C; Xie W
    Nanotechnology; 2020 May; 31(21):215403. PubMed ID: 32031997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-enhanced centrifugally-spun SnSb/carbon microfiber composite as advanced anode material for sodium-ion battery.
    Jia H; Dirican M; Aksu C; Sun N; Chen C; Zhu J; Zhu P; Yan C; Li Y; Ge Y; Guo J; Zhang X
    J Colloid Interface Sci; 2019 Feb; 536():655-663. PubMed ID: 30396121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable Synthesis of Peapod-like Sb@C and Corn-like C@Sb Nanotubes for Sodium Storage.
    Yang K; Tang J; Liu Y; Kong M; Zhou B; Shang Y; Zhang WH
    ACS Nano; 2020 May; 14(5):5728-5737. PubMed ID: 32324374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.