These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31532899)

  • 1. Surface and Interface Engineering: Molybdenum Carbide-Based Nanomaterials for Electrochemical Energy Conversion.
    Ge R; Huo J; Sun M; Zhu M; Li Y; Chou S; Li W
    Small; 2021 Mar; 17(9):e1903380. PubMed ID: 31532899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction.
    Miao M; Pan J; He T; Yan Y; Xia BY; Wang X
    Chemistry; 2017 Aug; 23(46):10947-10961. PubMed ID: 28474426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Porous Molybdenum Carbide Based Nanomaterials for Electrocatalytic Hydrogen Production.
    Liu Y; Huo J; Guo J; Lu L; Shen Z; Chen W; Liu C; Liu H
    Front Chem; 2020; 8():426. PubMed ID: 32509734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis.
    Chen P; Tong Y; Wu C; Xie Y
    Acc Chem Res; 2018 Nov; 51(11):2857-2866. PubMed ID: 30375850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions.
    Zhao Y; Zhang J; Guo X; Cao X; Wang S; Liu H; Wang G
    Chem Soc Rev; 2023 May; 52(9):3215-3264. PubMed ID: 37073529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molybdenum Carbide-Decorated Metallic Cobalt@Nitrogen-Doped Carbon Polyhedrons for Enhanced Electrocatalytic Hydrogen Evolution.
    Wu C; Liu D; Li H; Li J
    Small; 2018 Apr; 14(16):e1704227. PubMed ID: 29571215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic carbon nanomaterials for electrochemical energy conversion.
    Wang L; Liu Z; Zhang J
    Nanoscale; 2022 Sep; 14(37):13473-13489. PubMed ID: 36094008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent progress of molybdenum carbide based electrocatalysts for electrocatalytic hydrogen evolution reaction.
    Tong Y; Zhang Z; Hou Y; Yan L; Chen X; Zhang H; Wang X; Li Y
    Nanoscale; 2023 Sep; 15(36):14717-14736. PubMed ID: 37655752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic Molybdenum Nanomaterials for Electrocatalysis.
    Chen J; Guo S; Wang L; Liu S; Wang H; Zhao Q
    Small; 2024 May; ():e2401019. PubMed ID: 38757438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Structured MXenes With Modulated Atomic Environments: A Powerful New Platform for Electrocatalytic Energy Conversion.
    Xiao S; Zheng Y; Wu X; Zhou M; Rong X; Wang L; Tang Y; Liu X; Qiu L; Cheng C
    Small; 2022 Oct; 18(41):e2203281. PubMed ID: 35989101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds.
    Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D
    Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Site Engineering in Porous Electrocatalysts.
    Chen H; Liang X; Liu Y; Ai X; Asefa T; Zou X
    Adv Mater; 2020 Nov; 32(44):e2002435. PubMed ID: 32666550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design Strategies of Transition-Metal Phosphate and Phosphonate Electrocatalysts for Energy-Related Reactions.
    Zhao H; Yuan ZY
    ChemSusChem; 2021 Jan; 14(1):130-149. PubMed ID: 33030810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.
    Wu Q; Yang L; Wang X; Hu Z
    Acc Chem Res; 2017 Feb; 50(2):435-444. PubMed ID: 28145692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface and interface engineering of electrode materials for lithium-ion batteries.
    Wang KX; Li XH; Chen JS
    Adv Mater; 2015 Jan; 27(3):527-45. PubMed ID: 25355133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Heteroatom-Doped Carbon Nanomaterials as Multifunctional Metal-Free Catalysts for Integrated Energy Devices.
    Paul R; Du F; Dai L; Ding Y; Wang ZL; Wei F; Roy A
    Adv Mater; 2019 Mar; 31(13):e1805598. PubMed ID: 30761622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic and Structural Engineering of Carbon-Based Metal-Free Electrocatalysts for Water Splitting.
    Wang X; Vasileff A; Jiao Y; Zheng Y; Qiao SZ
    Adv Mater; 2019 Mar; 31(13):e1803625. PubMed ID: 30276904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Electrocatalytic Applications of Layer-Structured Metal Chalcogenides Composites.
    Qian Y; Zhang F; Luo X; Zhong Y; Kang DJ; Hu Y
    Small; 2024 Jun; 20(26):e2310526. PubMed ID: 38221685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low Dimensional Platinum-Based Bimetallic Nanostructures for Advanced Catalysis.
    Shao Q; Wang P; Zhu T; Huang X
    Acc Chem Res; 2019 Dec; 52(12):3384-3396. PubMed ID: 31397995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.