These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31532911)

  • 1. Improving Proteome Coverage for Small Sample Amounts: An Advanced Method for Proteomics Approaches with Low Bacterial Cell Numbers.
    Blankenburg S; Hentschker C; Nagel A; Hildebrandt P; Michalik S; Dittmar D; Surmann K; Völker U
    Proteomics; 2019 Dec; 19(23):e1900192. PubMed ID: 31532911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular Protein Fractionation in Legionella pneumophila and Preparation of the Derived Sub-proteomes for Analysis by Mass Spectrometry.
    Maaß S; Moog G; Becher D
    Methods Mol Biol; 2019; 1921():445-464. PubMed ID: 30694509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative fluorescent labeling strategies for characterizing gram-positive pathogenic bacteria: Flow cytometry supported counting, sorting, and proteome analysis of Staphylococcus aureus retrieved from infected host cells.
    Hildebrandt P; Surmann K; Salazar MG; Normann N; Völker U; Schmidt F
    Cytometry A; 2016 Oct; 89(10):932-940. PubMed ID: 27643682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of FASP, SP3, and iST Protocols for Proteomic Sample Preparation in the Low Microgram Range.
    Sielaff M; Kuharev J; Bohn T; Hahlbrock J; Bopp T; Tenzer S; Distler U
    J Proteome Res; 2017 Nov; 16(11):4060-4072. PubMed ID: 28948796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive proteome analysis using paramagnetic bead technology.
    Hughes CS; Foehr S; Garfield DA; Furlong EE; Steinmetz LM; Krijgsveld J
    Mol Syst Biol; 2014 Oct; 10(10):757. PubMed ID: 25358341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A proteomic view of an important human pathogen--towards the quantification of the entire Staphylococcus aureus proteome.
    Becher D; Hempel K; Sievers S; Zühlke D; Pané-Farré J; Otto A; Fuchs S; Albrecht D; Bernhardt J; Engelmann S; Völker U; van Dijl JM; Hecker M
    PLoS One; 2009 Dec; 4(12):e8176. PubMed ID: 19997597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Miniaturized sample preparation on a digital microfluidics device for sensitive bottom-up microproteomics of mammalian cells using magnetic beads and mass spectrometry-compatible surfactants.
    Leipert J; Tholey A
    Lab Chip; 2019 Oct; 19(20):3490-3498. PubMed ID: 31531506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments.
    Hughes CS; Moggridge S; Müller T; Sorensen PH; Morin GB; Krijgsveld J
    Nat Protoc; 2019 Jan; 14(1):68-85. PubMed ID: 30464214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial mechanism of daptomycin antibiotic against Staphylococcus aureus based on a quantitative bacterial proteome analysis.
    Ma W; Zhang D; Li G; Liu J; He G; Zhang P; Yang L; Zhu H; Xu N; Liang S
    J Proteomics; 2017 Jan; 150():242-251. PubMed ID: 27693894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SP3-FAIMS-Enabled High-Throughput Quantitative Profiling of the Cysteinome.
    Desai HS; Yan T; Backus KM
    Curr Protoc; 2022 Jul; 2(7):e492. PubMed ID: 35895291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo Proteomics Approaches for the Analysis of Bacterial Adaptation Reactions in Host-Pathogen Settings.
    Pförtner H; Depke M; Surmann K; Schmidt F; Völker U
    Methods Mol Biol; 2018; 1841():207-228. PubMed ID: 30259489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An exclusion list based label-free proteome quantification approach using an LTQ Orbitrap.
    Muntel J; Hecker M; Becher D
    Rapid Commun Mass Spectrom; 2012 Mar; 26(6):701-9. PubMed ID: 22328225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass Spectrometry to Study the Bacterial Proteome from a Single Colony.
    Zhou J; Zhang L; Chuan H; Sloan A; Tsang R; Cheng K
    Methods Mol Biol; 2019; 1968():113-121. PubMed ID: 30929210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Staphylococcus aureus proteome.
    Otto A; van Dijl JM; Hecker M; Becher D
    Int J Med Microbiol; 2014 Mar; 304(2):110-20. PubMed ID: 24439828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted Proteomics for Studying Pathogenic Bacteria.
    Saleh S; Staes A; Deborggraeve S; Gevaert K
    Proteomics; 2019 Aug; 19(16):e1800435. PubMed ID: 31241236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From the genome sequence via the proteome to cell physiology - Pathoproteomics and pathophysiology of Staphylococcus aureus.
    Hecker M; Mäder U; Völker U
    Int J Med Microbiol; 2018 Aug; 308(6):545-557. PubMed ID: 29398252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global analysis of bacterial membrane proteins and their modifications.
    Soufi B; Macek B
    Int J Med Microbiol; 2015 Feb; 305(2):203-8. PubMed ID: 25595026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Set of Novel Automated Quantitative Microproteomics Protocols for Small Sample Amounts and Its Application to Kidney Tissue Substructures.
    de Graaf EL; Pellegrini D; McDonnell LA
    J Proteome Res; 2016 Dec; 15(12):4722-4730. PubMed ID: 27809536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of NanoLC Column and Gradient Length as well as MS/MS Frequency and Sample Complexity on Shotgun Protein Identification of Marine Bacteria.
    Wöhlbrand L; Rabus R; Blasius B; Feenders C
    J Mol Microbiol Biotechnol; 2017; 27(3):199-212. PubMed ID: 28850952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics technologies for the global identification and quantification of proteins.
    Brewis IA; Brennan P
    Adv Protein Chem Struct Biol; 2010; 80():1-44. PubMed ID: 21109216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.