These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31532911)

  • 21. Membrane Proteomics in Gram-Positive Bacteria: Two Complementary Approaches to Target the Hydrophobic Species of Proteins.
    Sievers S
    Methods Mol Biol; 2018; 1841():21-33. PubMed ID: 30259477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. iTRAQ-based proteome analysis of fluoroquinolone-resistant Staphylococcus aureus.
    Thai VC; Lim TK; Le KPU; Lin Q; Nguyen TTH
    J Glob Antimicrob Resist; 2017 Mar; 8():82-89. PubMed ID: 28039103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential Proteome Between Patient-Related and Non-related Environmental Isolates of Legionella pneumophila.
    Quero S; García-Núñez M; Párraga-Niño N; Pedro-Botet ML; Mateu L; Sabrià M
    Curr Microbiol; 2017 Mar; 74(3):344-355. PubMed ID: 28138785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbore liquid chromatography ultraviolet detection for quantification of total peptide amount and its application for assessing sample quality in shotgun proteome analysis of hundreds of cells.
    Wang N; Tang Y; Chen L; Li L
    J Chromatogr A; 2014 Apr; 1338():51-7. PubMed ID: 24630977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of Staphylococcus aureus proteins secreted inside infected human epithelial cells.
    Surmann K; Depke M; Dhople VM; Pané-Farré J; Hildebrandt P; Gumz J; Schaible UE; Völker U; Schmidt F
    Int J Med Microbiol; 2018 Aug; 308(6):664-674. PubMed ID: 29941384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-resolved quantitative proteome profiling of host-pathogen interactions: the response of Staphylococcus aureus RN1HG to internalisation by human airway epithelial cells.
    Schmidt F; Scharf SS; Hildebrandt P; Burian M; Bernhardt J; Dhople V; Kalinka J; Gutjahr M; Hammer E; Völker U
    Proteomics; 2010 Aug; 10(15):2801-11. PubMed ID: 20518028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative Proteomics of the E. coli Membranome.
    Tsolis KC; Economou A
    Methods Enzymol; 2017; 586():15-36. PubMed ID: 28137561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mass spectrometry-based proteomics combined with bioinformatic tools for bacterial classification.
    Dworzanski JP; Deshpande SV; Chen R; Jabbour RE; Snyder AP; Wick CH; Li L
    J Proteome Res; 2006 Jan; 5(1):76-87. PubMed ID: 16396497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The current state of microbial proteomics: where we are and where we want to go.
    Chao TC; Hansmeier N
    Proteomics; 2012 Feb; 12(4-5):638-50. PubMed ID: 22246737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomic approaches to study Staphylococcus aureus pathogenesis.
    François P; Scherl A; Hochstrasser D; Schrenzel J
    J Proteomics; 2010 Feb; 73(4):701-8. PubMed ID: 19879388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteome coverage prediction for integrated proteomics datasets.
    Claassen M; Aebersold R; Buhmann JM
    J Comput Biol; 2011 Mar; 18(3):283-93. PubMed ID: 21385034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteome analyses of Staphylococcus aureus in growing and non-growing cells: a physiological approach.
    Kohler C; Wolff S; Albrecht D; Fuchs S; Becher D; Büttner K; Engelmann S; Hecker M
    Int J Med Microbiol; 2005 Dec; 295(8):547-65. PubMed ID: 16325551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A global Staphylococcus aureus proteome resource applied to the in vivo characterization of host-pathogen interactions.
    Michalik S; Depke M; Murr A; Gesell Salazar M; Kusebauch U; Sun Z; Meyer TC; Surmann K; Pförtner H; Hildebrandt P; Weiss S; Palma Medina LM; Gutjahr M; Hammer E; Becher D; Pribyl T; Hammerschmidt S; Deutsch EW; Bader SL; Hecker M; Moritz RL; Mäder U; Völker U; Schmidt F
    Sci Rep; 2017 Sep; 7(1):9718. PubMed ID: 28887440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward the Quantitative Characterization of Arginine Phosphorylations in Staphylococcus aureus.
    Junker S; Maaß S; Otto A; Hecker M; Becher D
    J Proteome Res; 2019 Jan; 18(1):265-279. PubMed ID: 30358407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved SILAC method for double labeling of bacterial proteome.
    Han J; Yi S; Zhao X; Zheng Y; Yang D; Du G; Yang XY; He QY; Sun X
    J Proteomics; 2019 Mar; 194():89-98. PubMed ID: 30553074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation and improvement of protein extraction methods for analysis of skin proteome by noninvasive tape stripping.
    Kaleja P; Emmert H; Gerstel U; Weidinger S; Tholey A
    J Proteomics; 2020 Apr; 217():103678. PubMed ID: 32036079
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic analysis to investigate regulatory networks in Staphylococcus aureus.
    Engelmann S; Hecker M
    Methods Mol Biol; 2008; 431():25-45. PubMed ID: 18287745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics.
    Shen X; Hu Q; Li J; Wang J; Qu J
    J Proteome Res; 2015 Oct; 14(10):4147-57. PubMed ID: 26051676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomic Signatures in Staphylococcus aureus.
    Engelmann S; Fuchs S
    Methods Mol Biol; 2018; 1841():113-130. PubMed ID: 30259483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extending the Compatibility of the SP3 Paramagnetic Bead Processing Approach for Proteomics.
    Moggridge S; Sorensen PH; Morin GB; Hughes CS
    J Proteome Res; 2018 Apr; 17(4):1730-1740. PubMed ID: 29565595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.