These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 31533042)

  • 1. Polymer Modeling Predicts Chromosome Reorganization in Senescence.
    Chiang M; Michieletto D; Brackley CA; Rattanavirotkul N; Mohammed H; Marenduzzo D; Chandra T
    Cell Rep; 2019 Sep; 28(12):3212-3223.e6. PubMed ID: 31533042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterochromatin drives compartmentalization of inverted and conventional nuclei.
    Falk M; Feodorova Y; Naumova N; Imakaev M; Lajoie BR; Leonhardt H; Joffe B; Dekker J; Fudenberg G; Solovei I; Mirny LA
    Nature; 2019 Jun; 570(7761):395-399. PubMed ID: 31168090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lamina-associated domains: peripheral matters and internal affairs.
    Briand N; Collas P
    Genome Biol; 2020 Apr; 21(1):85. PubMed ID: 32241294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restructuring of Lamina-Associated Domains in Senescence and Cancer.
    Bellanger A; Madsen-Østerbye J; Galigniana NM; Collas P
    Cells; 2022 Jun; 11(11):. PubMed ID: 35681541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin phase separation and nuclear shape fluctuations are correlated in a polymer model of the nucleus.
    Attar AG; Paturej J; Banigan EJ; Erbaş A
    Nucleus; 2024 Dec; 15(1):2351957. PubMed ID: 38753956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Nuclear Lamina as an Organizer of Chromosome Architecture.
    Shevelyov YY; Ulianov SV
    Cells; 2019 Feb; 8(2):. PubMed ID: 30744037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Massive reshaping of genome-nuclear lamina interactions during oncogene-induced senescence.
    Lenain C; de Graaf CA; Pagie L; Visser NL; de Haas M; de Vries SS; Peric-Hupkes D; van Steensel B; Peeper DS
    Genome Res; 2017 Oct; 27(10):1634-1644. PubMed ID: 28916540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions.
    Guelen L; Pagie L; Brasset E; Meuleman W; Faza MB; Talhout W; Eussen BH; de Klein A; Wessels L; de Laat W; van Steensel B
    Nature; 2008 Jun; 453(7197):948-51. PubMed ID: 18463634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global reorganization of the nuclear landscape in senescent cells.
    Chandra T; Ewels PA; Schoenfelder S; Furlan-Magaril M; Wingett SW; Kirschner K; Thuret JY; Andrews S; Fraser P; Reik W
    Cell Rep; 2015 Feb; 10(4):471-83. PubMed ID: 25640177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the micro-proteome of the nuclear lamina and lamina-associated domains.
    Wong X; Cutler JA; Hoskins VE; Gordon M; Madugundu AK; Pandey A; Reddy KL
    Life Sci Alliance; 2021 May; 4(5):. PubMed ID: 33758005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical constraints in polymer modeling of chromatin associations with the nuclear periphery at kilobase scale.
    Brunet A; Destainville N; Collas P
    Nucleus; 2021 Dec; 12(1):6-20. PubMed ID: 33435761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell dynamics of genome-nuclear lamina interactions.
    Kind J; Pagie L; Ortabozkoyun H; Boyle S; de Vries SS; Janssen H; Amendola M; Nolen LD; Bickmore WA; van Steensel B
    Cell; 2013 Mar; 153(1):178-92. PubMed ID: 23523135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CTCF supports preferentially short lamina-associated domains.
    Kaczmarczyk LS; Levi N; Segal T; Salmon-Divon M; Gerlitz G
    Chromosome Res; 2022 Mar; 30(1):123-136. PubMed ID: 35239049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Choreography of lamina-associated domains: structure meets dynamics.
    Alagna NS; Thomas TI; Wilson KL; Reddy KL
    FEBS Lett; 2023 Nov; 597(22):2806-2822. PubMed ID: 37953467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear pore density controls heterochromatin reorganization during senescence.
    Boumendil C; Hari P; Olsen KCF; Acosta JC; Bickmore WA
    Genes Dev; 2019 Feb; 33(3-4):144-149. PubMed ID: 30692205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin phase separation and nuclear shape fluctuations are correlated in a polymer model of the nucleus.
    Attar AG; Paturej J; Banigan EJ; Erbas A
    bioRxiv; 2024 Jan; ():. PubMed ID: 38168411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous flexibility can contribute to chromatin segregation in the cell nucleus.
    Girard M; de la Cruz MO; Marko JF; Erbaş A
    Phys Rev E; 2024 Jul; 110(1-1):014403. PubMed ID: 39160964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Chromatin Landscape of Cellular Senescence.
    Criscione SW; Teo YV; Neretti N
    Trends Genet; 2016 Nov; 32(11):751-761. PubMed ID: 27692431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic genome-nuclear lamina interactions: modulating roles of Lamin A and BAF.
    Kind J; van Steensel B
    Nucleus; 2014; 5(2):124-30. PubMed ID: 24717229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin.
    Hu H; Ji Q; Song M; Ren J; Liu Z; Wang Z; Liu X; Yan K; Hu J; Jing Y; Wang S; Zhang W; Liu GH; Qu J
    Nucleic Acids Res; 2020 Jun; 48(11):6001-6018. PubMed ID: 32427330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.