These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31533091)

  • 1. Enhancing propulsion performance of a flexible heaving foil through dynamically adjusting its flexibility.
    Wang C; Ren F; Tang H
    Bioinspir Biomim; 2019 Oct; 14(6):064002. PubMed ID: 31533091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of complex driving motion on propulsion performance of a heaving flexible foil.
    Wang C; Tang H
    Bioinspir Biomim; 2018 Dec; 14(1):016011. PubMed ID: 30511653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model.
    Lucas KN; Thornycroft PJ; Gemmell BJ; Colin SP; Costello JH; Lauder GV
    Bioinspir Biomim; 2015 Oct; 10(5):056019. PubMed ID: 26447541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rolling and pitching oscillating foil propulsion in ground effect.
    Perkins M; Elles D; Badlissi G; Mivehchi A; Dahl J; Licht S
    Bioinspir Biomim; 2017 Nov; 13(1):016003. PubMed ID: 28869422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow control by means of a traveling curvature wave in fishlike escape responses.
    Liu G; Yu YL; Tong BG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056312. PubMed ID: 22181503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Length effects of a built-in flapping flat plate on the flow over a traveling wavy foil.
    Liu N; Peng Y; Lu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063019. PubMed ID: 25019891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control.
    Wang C; Tang H
    Bioinspir Biomim; 2018 May; 13(4):046005. PubMed ID: 29648545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics and locomotion of flexible foils in a frictional environment.
    Wang X; Alben S
    Proc Math Phys Eng Sci; 2018 Jan; 474(2209):20170503. PubMed ID: 29434507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model.
    Wolf Z; Jusufi A; Vogt DM; Lauder GV
    Bioinspir Biomim; 2020 Jun; 15(4):046008. PubMed ID: 32330908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion.
    Feilich KL; Lauder GV
    Bioinspir Biomim; 2015 Apr; 10(3):036002. PubMed ID: 25879846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fin Ray Stiffness and Fin Morphology Control Ribbon-Fin-Based Propulsion.
    Liu H; Taylor B; Curet OM
    Soft Robot; 2017 Jun; 4(2):103-116. PubMed ID: 29182095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-amplitude undulatory swimming near a wall.
    Fernández-Prats R; Raspa V; Thiria B; Huera-Huarte F; Godoy-Diana R
    Bioinspir Biomim; 2015 Jan; 10(1):016003. PubMed ID: 25561330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of synchronized fins in biomimetic propulsion.
    Shoele K; Zhu Q
    Bioinspir Biomim; 2015 Mar; 10(2):026008. PubMed ID: 25821945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a biomimetic robotic fish and its control algorithm.
    Yu J; Tan M; Wang S; Chen E
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1798-810. PubMed ID: 15462446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-body dynamics based numerical modelling tool for solving aquatic biomimetic problems.
    Li R; Xiao Q; Liu Y; Hu J; Li L; Li G; Liu H; Hu K; Wen L
    Bioinspir Biomim; 2018 Jul; 13(5):056001. PubMed ID: 29916395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparative Numerical Study on the Performances and Vortical Patterns of Two Bioinspired Oscillatory Mechanisms: Undulating and Pure Heaving.
    Ebrahimi M; Abbaspour M
    Appl Bionics Biomech; 2015; 2015():325934. PubMed ID: 27057133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
    Tay WB; van Oudheusden BW; Bijl H
    Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications.
    Palagi S; Jager EW; Mazzolai B; Beccai L
    Bioinspir Biomim; 2013 Dec; 8(4):046004. PubMed ID: 24103844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.