These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31533092)

  • 81. A novel feature extraction technique for pulmonary sound analysis based on EMD.
    Mondal A; Banerjee P; Tang H
    Comput Methods Programs Biomed; 2018 Jun; 159():199-209. PubMed ID: 29650313
    [TBL] [Abstract][Full Text] [Related]  

  • 82. C-HMOSHSSA: Gene selection for cancer classification using multi-objective meta-heuristic and machine learning methods.
    Sharma A; Rani R
    Comput Methods Programs Biomed; 2019 Sep; 178():219-235. PubMed ID: 31416551
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Detection of the third heart sound using a tailored wavelet approach.
    Hult P; FjÀllbrant T; Wranne B; Ask P
    Med Biol Eng Comput; 2004 Mar; 42(2):253-8. PubMed ID: 15125157
    [TBL] [Abstract][Full Text] [Related]  

  • 84. An efficient statistical feature selection approach for classification of gene expression data.
    Chandra B; Gupta M
    J Biomed Inform; 2011 Aug; 44(4):529-35. PubMed ID: 21241823
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Epileptic seizure detection in EEG signal using machine learning techniques.
    Jaiswal AK; Banka H
    Australas Phys Eng Sci Med; 2018 Mar; 41(1):81-94. PubMed ID: 29264792
    [TBL] [Abstract][Full Text] [Related]  

  • 86. [Heart sound recognition algorithm based on PNN for evaluating cardiac contractility change trend].
    Guo X; Yan Y; Yao X; Xiao S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):934-7. PubMed ID: 17121325
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification.
    Pota M; Scalco E; Sanguineti G; Farneti A; Cattaneo GM; Rizzo G; Esposito M
    Artif Intell Med; 2017 Sep; 81():41-53. PubMed ID: 28325604
    [TBL] [Abstract][Full Text] [Related]  

  • 88. An Ensemble Multilabel Classification for Disease Risk Prediction.
    Li R; Liu W; Lin Y; Zhao H; Zhang C
    J Healthc Eng; 2017; 2017():8051673. PubMed ID: 29065647
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Classification of pulmonary pathology from breath sounds using the wavelet packet transform and an extreme learning machine.
    Palaniappan R; Sundaraj K; Sundaraj S; Huliraj N; Revadi SS
    Biomed Tech (Berl); 2018 Jul; 63(4):383-394. PubMed ID: 28596461
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Use of Machine Learning Classifiers and Sensor Data to Detect Neurological Deficit in Stroke Patients.
    Park E; Chang HJ; Nam HS
    J Med Internet Res; 2017 Apr; 19(4):e120. PubMed ID: 28420599
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A Novel Method for Measuring the Timing of Heart Sound Components through Digital Phonocardiography.
    Giordano N; Knaflitz M
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010113
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Toward analyzing and synthesizing previous research in early prediction of cardiac arrest using machine learning based on a multi-layered integrative framework.
    Layeghian Javan S; Sepehri MM; Aghajani H
    J Biomed Inform; 2018 Dec; 88():70-89. PubMed ID: 30389440
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Deep Unsupervised Representation Learning for Abnormal Heart Sound Classification.
    Amiriparian S; Schmitt M; Cummins N; Qian K; Dong F; Schuller B
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4776-4779. PubMed ID: 30441416
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Early classification of multivariate temporal observations by extraction of interpretable shapelets.
    Ghalwash MF; Obradovic Z
    BMC Bioinformatics; 2012 Aug; 13():195. PubMed ID: 22873729
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The use of analytic hierarchy process for measuring the complexity of medical diagnosis.
    Ben-Assuli O; Kumar N; Arazy O; Shabtai I
    Health Informatics J; 2020 Mar; 26(1):218-232. PubMed ID: 30672359
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Heart sound classification using the SNMFNet classifier.
    Han W; Xie S; Yang Z; Zhou S; Huang H
    Physiol Meas; 2019 Oct; 40(10):105003. PubMed ID: 31533092
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Automatic Multi-Level In-Exhale Segmentation and Enhanced Generalized S-Transform for wheezing detection.
    Chen H; Yuan X; Li J; Pei Z; Zheng X
    Comput Methods Programs Biomed; 2019 Sep; 178():163-173. PubMed ID: 31416545
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Automated Signal Quality Assessment for Heart Sound Signal by Novel Features and Evaluation in Open Public Datasets.
    Tang H; Wang M; Hu Y; Guo B; Li T
    Biomed Res Int; 2021; 2021():7565398. PubMed ID: 33681379
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A Markov-Switching Model Approach to Heart Sound Segmentation and Classification.
    Noman F; Salleh SH; Ting CM; Samdin SB; Ombao H; Hussain H
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):705-716. PubMed ID: 31251203
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Classification of heart sounds based on quality assessment and wavelet scattering transform.
    Mei N; Wang H; Zhang Y; Liu F; Jiang X; Wei S
    Comput Biol Med; 2021 Oct; 137():104814. PubMed ID: 34481179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.