These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 31533196)

  • 1. Characterizing the involvement of FaMADS9 in the regulation of strawberry fruit receptacle development.
    Vallarino JG; Merchante C; Sánchez-Sevilla JF; de Luis Balaguer MA; Pott DM; Ariza MT; Casañal A; Posé D; Vioque A; Amaya I; Willmitzer L; Solano R; Sozzani R; Fernie AR; Botella MA; Giovannoni JJ; Valpuesta V; Osorio S
    Plant Biotechnol J; 2020 Apr; 18(4):929-943. PubMed ID: 31533196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits.
    Medina-Puche L; Cumplido-Laso G; Amil-Ruiz F; Hoffmann T; Ring L; Rodríguez-Franco A; Caballero JL; Schwab W; Muñoz-Blanco J; Blanco-Portales R
    J Exp Bot; 2014 Feb; 65(2):401-17. PubMed ID: 24277278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The NAC transcription factor FaRIF controls fruit ripening in strawberry.
    Martín-Pizarro C; Vallarino JG; Osorio S; Meco V; Urrutia M; Pillet J; Casañal A; Merchante C; Amaya I; Willmitzer L; Fernie AR; Giovannoni JJ; Botella MA; Valpuesta V; Posé D
    Plant Cell; 2021 Jul; 33(5):1574-1593. PubMed ID: 33624824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An atypical HLH transcriptional regulator plays a novel and important role in strawberry ripened receptacle.
    Medina-Puche L; Martínez-Rivas FJ; Molina-Hidalgo FJ; Mercado JA; Moyano E; Rodríguez-Franco A; Caballero JL; Muñoz-Blanco J; Blanco-Portales R
    BMC Plant Biol; 2019 Dec; 19(1):586. PubMed ID: 31881835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue.
    Seymour GB; Ryder CD; Cevik V; Hammond JP; Popovich A; King GJ; Vrebalov J; Giovannoni JJ; Manning K
    J Exp Bot; 2011 Jan; 62(3):1179-88. PubMed ID: 21115665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits.
    Schaart JG; Dubos C; Romero De La Fuente I; van Houwelingen AMML; de Vos RCH; Jonker HH; Xu W; Routaboul JM; Lepiniec L; Bovy AG
    New Phytol; 2013 Jan; 197(2):454-467. PubMed ID: 23157553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fruit-specific transcription factor FaDOF2 regulates the production of eugenol in ripe fruit receptacles.
    Molina-Hidalgo FJ; Medina-Puche L; Cañete-Gómez C; Franco-Zorrilla JM; López-Vidriero I; Solano R; Caballero JL; Rodríguez-Franco A; Blanco-Portales R; Muñoz-Blanco J; Moyano E
    J Exp Bot; 2017 Jul; 68(16):4529-4543. PubMed ID: 28981772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression.
    Daminato M; Guzzo F; Casadoro G
    J Exp Bot; 2013 Sep; 64(12):3775-86. PubMed ID: 23888065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central role of FaGAMYB in the transition of the strawberry receptacle from development to ripening.
    Vallarino JG; Osorio S; Bombarely A; Casañal A; Cruz-Rus E; Sánchez-Sevilla JF; Amaya I; Giavalisco P; Fernie AR; Botella MA; Valpuesta V
    New Phytol; 2015 Oct; 208(2):482-96. PubMed ID: 26010039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles.
    Medina-Puche L; Molina-Hidalgo FJ; Boersma M; Schuurink RC; López-Vidriero I; Solano R; Franco-Zorrilla JM; Caballero JL; Blanco-Portales R; Muñoz-Blanco J
    Plant Physiol; 2015 Jun; 168(2):598-614. PubMed ID: 25931522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening.
    Paniagua C; Blanco-Portales R; Barceló-Muñoz M; García-Gago JA; Waldron KW; Quesada MA; Muñoz-Blanco J; Mercado JA
    J Exp Bot; 2016 Feb; 67(3):619-31. PubMed ID: 26585222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethylene is involved in strawberry fruit ripening in an organ-specific manner.
    Merchante C; Vallarino JG; Osorio S; Aragüez I; Villarreal N; Ariza MT; Martínez GA; Medina-Escobar N; Civello MP; Fernie AR; Botella MA; Valpuesta V
    J Exp Bot; 2013 Nov; 64(14):4421-39. PubMed ID: 24098047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extensive transcriptomic studies on the roles played by abscisic acid and auxins in the development and ripening of strawberry fruits.
    Medina-Puche L; Blanco-Portales R; Molina-Hidalgo FJ; Cumplido-Laso G; García-Caparrós N; Moyano-Cañete E; Caballero-Repullo JL; Muñoz-Blanco J; Rodríguez-Franco A
    Funct Integr Genomics; 2016 Nov; 16(6):671-692. PubMed ID: 27614432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for polygalacturonase in strawberry fruit softening.
    Quesada MA; Blanco-Portales R; Posé S; García-Gago JA; Jiménez-Bermúdez S; Muñoz-Serrano A; Caballero JL; Pliego-Alfaro F; Mercado JA; Muñoz-Blanco J
    Plant Physiol; 2009 Jun; 150(2):1022-32. PubMed ID: 19395408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FaGAST2, a strawberry ripening-related gene, acts together with FaGAST1 to determine cell size of the fruit receptacle.
    Moyano-Cañete E; Bellido ML; García-Caparrós N; Medina-Puche L; Amil-Ruiz F; González-Reyes JA; Caballero JL; Muñoz-Blanco J; Blanco-Portales R
    Plant Cell Physiol; 2013 Feb; 54(2):218-36. PubMed ID: 23231876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of the MADS-box gene SlMBP8 accelerates fruit ripening of tomato (Solanum lycopersicum).
    Yin W; Hu Z; Cui B; Guo X; Hu J; Zhu Z; Chen G
    Plant Physiol Biochem; 2017 Sep; 118():235-244. PubMed ID: 28649000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of two ripening-related strawberry (Fragaria x ananassa cv. Chandler) pectate lyase genes.
    Benítez-Burraco A; Blanco-Portales R; Redondo-Nevado J; Bellido ML; Moyano E; Caballero JL; Muñoz-Blanco J
    J Exp Bot; 2003 Feb; 54(383):633-45. PubMed ID: 12554706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor.
    Jia H; Jiu S; Zhang C; Wang C; Tariq P; Liu Z; Wang B; Cui L; Fang J
    Plant Biotechnol J; 2016 Oct; 14(10):2045-65. PubMed ID: 27005823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of eight phytohormone concentrations, expression levels of ABA biosynthesis genes, and ripening-related transcription factors during fruit development in strawberry.
    Kim J; Lee JG; Hong Y; Lee EJ
    J Plant Physiol; 2019 Aug; 239():52-60. PubMed ID: 31185317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of FaNIP1;1 gene, a ripening-related and receptacle-specific aquaporin in strawberry fruit.
    Molina-Hidalgo FJ; Medina-Puche L; Gelis S; Ramos J; Sabir F; Soveral G; Prista C; Iglesias-Fernández R; Caballero JL; Muñoz-Blanco J; Blanco-Portales R
    Plant Sci; 2015 Sep; 238():198-211. PubMed ID: 26259188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.