These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 31533261)

  • 1. Nanostructures for Light Trapping in Thin Film Solar Cells.
    Peter Amalathas A; Alkaisi MM
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31533261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of nanostructured plasmonic back contacts for thin-film silicon solar cells.
    Paetzold UW; Moulin E; Pieters BE; Carius R; Rau U
    Opt Express; 2011 Nov; 19 Suppl 6():A1219-30. PubMed ID: 22109618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paths to light trapping in thin film GaAs solar cells.
    Xiao J; Fang H; Su R; Li K; Song J; Krauss TF; Li J; Martins ER
    Opt Express; 2018 Mar; 26(6):A341-A351. PubMed ID: 29609304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells.
    Tsai MA; Han HW; Tsai YL; Tseng PC; Yu P; Kuo HC; Shen CH; Shieh JM; Lin SH
    Opt Express; 2011 Jul; 19 Suppl 4():A757-62. PubMed ID: 21747544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications.
    Mavrokefalos A; Han SE; Yerci S; Branham MS; Chen G
    Nano Lett; 2012 Jun; 12(6):2792-6. PubMed ID: 22612694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.
    Bozzola A; Liscidini M; Andreani LC
    Opt Express; 2012 Mar; 20 Suppl 2():A224-44. PubMed ID: 22418672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-enhanced parabolic nanostructures for broadband absorption in ultra-thin crystalline Si solar cells.
    Pritom YA; Sikder DK; Zaman S; Hossain M
    Nanoscale Adv; 2023 Sep; 5(18):4986-4995. PubMed ID: 37705791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elongated nanostructures for radial junction solar cells.
    Kuang Y; Vece MD; Rath JK; Dijk Lv; Schropp RE
    Rep Prog Phys; 2013 Oct; 76(10):106502. PubMed ID: 24088584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembled Monolayer of Wavelength-Scale Core-Shell Particles for Low-Loss Plasmonic and Broadband Light Trapping in Solar Cells.
    Dabirian A; Byranvand MM; Naqavi A; Kharat AN; Taghavinia N
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):247-55. PubMed ID: 26726990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arrays of Plasmonic Nanostructures for Absorption Enhancement in Perovskite Thin Films.
    Shen T; Tan Q; Dai Z; Padture NP; Pacifici D
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32660111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light Propagation in Flexible Thin-Film Amorphous Silicon Solar Cells with Nanotextured Metal Back Reflectors.
    Cao S; Yu D; Lin Y; Zhang C; Lu L; Yin M; Zhu X; Chen X; Li D
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26184-26192. PubMed ID: 32392028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells.
    Wang D; Su G
    Sci Rep; 2014 Nov; 4():7165. PubMed ID: 25418477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique.
    Schuster CS; Kowalczewski P; Martins ER; Patrini M; Scullion MG; Liscidini M; Lewis L; Reardon C; Andreani LC; Krauss TF
    Opt Express; 2013 May; 21 Suppl 3():A433-9. PubMed ID: 24104431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light trapping regimes in thin-film silicon solar cells with a photonic pattern.
    Zanotto S; Liscidini M; Andreani LC
    Opt Express; 2010 Mar; 18(5):4260-74. PubMed ID: 20389438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.
    Akimov YA; Koh WS; Ostrikov K
    Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light management for photovoltaics using high-index nanostructures.
    Brongersma ML; Cui Y; Fan S
    Nat Mater; 2014 May; 13(5):451-60. PubMed ID: 24751773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling light trapping in nanostructured solar cells.
    Ferry VE; Polman A; Atwater HA
    ACS Nano; 2011 Dec; 5(12):10055-64. PubMed ID: 22082201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale observation of waveguide modes enhancing the efficiency of solar cells.
    Paetzold UW; Lehnen S; Bittkau K; Rau U; Carius R
    Nano Lett; 2014 Nov; 14(11):6599-605. PubMed ID: 25350265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.