BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31533352)

  • 1. Detection of Differentially Methylated Regions Using Bayes Factor for Ordinal Group Responses.
    Dunbar F; Xu H; Ryu D; Ghosh S; Shi H; George V
    Genes (Basel); 2019 Sep; 10(9):. PubMed ID: 31533352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Methods for Detection of Differentially Methylated Regions Using Kernel Distance and Scan Statistics.
    Dunbar F; Xu H; Ryu D; Ghosh S; Shi H; George V
    Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 31013791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bayesian hidden Markov model for detecting differentially methylated regions.
    Ji T
    Biometrics; 2019 Jun; 75(2):663-673. PubMed ID: 30443900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypomethylation coordinates antagonistically with hypermethylation in cancer development: a case study of leukemia.
    Kushwaha G; Dozmorov M; Wren JD; Qiu J; Shi H; Xu D
    Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):18. PubMed ID: 27461342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian Approach for Analysis of Whole-Genome Bisulfite Sequencing Data Identifies Disease-Associated Changes in DNA Methylation.
    Rackham OJ; Langley SR; Oates T; Vradi E; Harmston N; Srivastava PK; Behmoaras J; Dellaportas P; Bottolo L; Petretto E
    Genetics; 2017 Apr; 205(4):1443-1458. PubMed ID: 28213474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonparametric Bayesian clustering to detect bipolar methylated genomic loci.
    Wu X; Sun MA; Zhu H; Xie H
    BMC Bioinformatics; 2015 Jan; 16():11. PubMed ID: 25592753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detect differentially methylated regions using non-homogeneous hidden Markov model for bisulfite sequencing data.
    Chen Y; Kwok CK; Jiang H; Fan X
    Methods; 2021 May; 189():34-43. PubMed ID: 32949692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic and genetic alterations and their influence on gene regulation in chronic lymphocytic leukemia.
    Huang D; Ovcharenko I
    BMC Genomics; 2017 Mar; 18(1):236. PubMed ID: 28302063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detect differentially methylated regions using non-homogeneous hidden Markov model for methylation array data.
    Shen L; Zhu J; Robert Li SY; Fan X
    Bioinformatics; 2017 Dec; 33(23):3701-3708. PubMed ID: 29036320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of differentially methylated regions in whole genome bisulfite sequencing data using local Getis-Ord statistics.
    Wen Y; Chen F; Zhang Q; Zhuang Y; Li Z
    Bioinformatics; 2016 Nov; 32(22):3396-3404. PubMed ID: 27493194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of genomic methylation status using methylation-specific and bisulfite sequencing polymerase chain reaction.
    Carless MA
    Methods Mol Biol; 2015; 1288():193-212. PubMed ID: 25827881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data.
    Feng H; Conneely KN; Wu H
    Nucleic Acids Res; 2014 Apr; 42(8):e69. PubMed ID: 24561809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A full Bayesian partition model for identifying hypo- and hyper-methylated loci from single nucleotide resolution sequencing data.
    Wang H; He C; Kushwaha G; Xu D; Qiu J
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):7. PubMed ID: 26818685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted bisulfite sequencing identified a panel of DNA methylation-based biomarkers for esophageal squamous cell carcinoma (ESCC).
    Pu W; Wang C; Chen S; Zhao D; Zhou Y; Ma Y; Wang Y; Li C; Huang Z; Jin L; Guo S; Wang J; Wang M
    Clin Epigenetics; 2017; 9():129. PubMed ID: 29270239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DMRFusion: A differentially methylated region detection tool based on the ranked fusion method.
    Yassi M; Shams Davodly E; Mojtabanezhad Shariatpanahi A; Heidari M; Dayyani M; Heravi-Moussavi A; Moattar MH; Kerachian MA
    Genomics; 2018 Nov; 110(6):366-374. PubMed ID: 29309841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of functionally methylated regions based on discriminant analysis through integrating methylation and gene expression data.
    Zhang Y; Zhang J
    Mol Biosyst; 2015 Jul; 11(7):1786-93. PubMed ID: 25865601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global DNA methylation profiling reveals new insights into epigenetically deregulated protein coding and long noncoding RNAs in CLL.
    Subhash S; Andersson PO; Kosalai ST; Kanduri C; Kanduri M
    Clin Epigenetics; 2016; 8():106. PubMed ID: 27777635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias.
    Nair SS; Coolen MW; Stirzaker C; Song JZ; Statham AL; Strbenac D; Robinson MD; Clark SJ
    Epigenetics; 2011 Jan; 6(1):34-44. PubMed ID: 20818161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of methylated regions with peak search based on Poisson model from massively parallel methylated DNA immunoprecipitation-sequencing data.
    Yang Y; Wang W; Li Y; Tu J; Bai Y; Xiao P; Zhang D; Lu Z
    Electrophoresis; 2010 Oct; 31(21):3537-44. PubMed ID: 20925052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both hypomethylation and hypermethylation in a 0.2-kb region of a DNA repeat in cancer.
    Nishiyama R; Qi L; Lacey M; Ehrlich M
    Mol Cancer Res; 2005 Nov; 3(11):617-26. PubMed ID: 16317087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.