These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 31533822)
61. Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism. Manikandan M; Deva Magendhra Rao AK; Arunkumar G; Manickavasagam M; Rajkumar KS; Rajaraman R; Munirajan AK Mol Cancer; 2016 Apr; 15():28. PubMed ID: 27056547 [TBL] [Abstract][Full Text] [Related]
62. miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Lánczky A; Nagy Á; Bottai G; Munkácsy G; Szabó A; Santarpia L; Győrffy B Breast Cancer Res Treat; 2016 Dec; 160(3):439-446. PubMed ID: 27744485 [TBL] [Abstract][Full Text] [Related]
63. Cross-platform comparison and visualisation of gene expression data using co-inertia analysis. Culhane AC; Perrière G; Higgins DG BMC Bioinformatics; 2003 Nov; 4():59. PubMed ID: 14633289 [TBL] [Abstract][Full Text] [Related]
64. CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data. Kang K; Meng Q; Shats I; Umbach DM; Li M; Li Y; Li X; Li L PLoS Comput Biol; 2019 Dec; 15(12):e1007510. PubMed ID: 31790389 [TBL] [Abstract][Full Text] [Related]
65. MicroRNAs induced in melanoma treated with combination targeted therapy of Temsirolimus and Bevacizumab. Wagenseller AG; Shada A; D'Auria KM; Murphy C; Sun D; Molhoek KR; Papin JA; Dutta A; Slingluff CL J Transl Med; 2013 Sep; 11():218. PubMed ID: 24047116 [TBL] [Abstract][Full Text] [Related]
66. MicroRNA signatures highlight new breast cancer subtypes. Bhattacharyya M; Nath J; Bandyopadhyay S Gene; 2015 Feb; 556(2):192-8. PubMed ID: 25485717 [TBL] [Abstract][Full Text] [Related]
67. Reconstruction of temporal activity of microRNAs from gene expression data in breast cancer cell line. Jayavelu ND; Bar N BMC Genomics; 2015 Dec; 16():1077. PubMed ID: 26763900 [TBL] [Abstract][Full Text] [Related]
68. An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets. Hill KE; Kelly AD; Kuijjer ML; Barry W; Rattani A; Garbutt CC; Kissick H; Janeway K; Perez-Atayde A; Goldsmith J; Gebhardt MC; Arredouani MS; Cote G; Hornicek F; Choy E; Duan Z; Quackenbush J; Haibe-Kains B; Spentzos D J Hematol Oncol; 2017 May; 10(1):107. PubMed ID: 28506242 [TBL] [Abstract][Full Text] [Related]
69. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management. Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154 [TBL] [Abstract][Full Text] [Related]
71. Development of an IFNγ response-related signature for predicting the survival of cutaneous melanoma. Hu B; Wei Q; Li X; Ju M; Wang L; Zhou C; Chen L; Li Z; Wei M; He M; Zhao L Cancer Med; 2020 Nov; 9(21):8186-8201. PubMed ID: 32902917 [TBL] [Abstract][Full Text] [Related]
72. Comprehensive analysis of the prognosis and biological significance for IFIT family in skin cutaneous melanoma. Jiang Y; Zhang C; Zhang J; Han D; Shi X Int Immunopharmacol; 2021 Dec; 101(Pt A):108344. PubMed ID: 34763233 [TBL] [Abstract][Full Text] [Related]
73. Identifying potential prognostic biomarkers in head and neck cancer based on the analysis of microRNA expression profiles in TCGA database. Wang X; Yin Z; Zhao Y; He M; Dong C; Zhong M Mol Med Rep; 2020 Mar; 21(3):1647-1657. PubMed ID: 32016476 [TBL] [Abstract][Full Text] [Related]
74. Predicting the clinical outcome of melanoma using an immune-related gene pairs signature. Meng L; He X; Zhang X; Zhang X; Wei Y; Wu B; Li W; Li J; Xiao Y PLoS One; 2020; 15(10):e0240331. PubMed ID: 33031392 [TBL] [Abstract][Full Text] [Related]
75. Identification of Potential Biomarkers for Anti-PD-1 Therapy in Melanoma by Weighted Correlation Network Analysis. Wang X; Chai Z; Li Y; Long F; Hao Y; Pan G; Liu M; Li B Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32316408 [TBL] [Abstract][Full Text] [Related]
76. A hypergraph-based method for large-scale dynamic correlation study at the transcriptomic scale. Kong Y; Yu T BMC Genomics; 2019 May; 20(1):397. PubMed ID: 31117943 [TBL] [Abstract][Full Text] [Related]
77. microRNA-7-5p inhibits melanoma cell proliferation and metastasis by suppressing RelA/NF-κB. Giles KM; Brown RA; Ganda C; Podgorny MJ; Candy PA; Wintle LC; Richardson KL; Kalinowski FC; Stuart LM; Epis MR; Haass NK; Herlyn M; Leedman PJ Oncotarget; 2016 May; 7(22):31663-80. PubMed ID: 27203220 [TBL] [Abstract][Full Text] [Related]
78. MicroRNAs in cancer: lessons from melanoma. Greenberg E; Nemlich Y; Markel G Curr Pharm Des; 2014; 20(33):5246-59. PubMed ID: 24479804 [TBL] [Abstract][Full Text] [Related]
79. Hsa-let-7b Suppresses Cell Proliferation by Targeting UHRF1 in Melanoma. Lu NH; Wei CY; Qi FZ; Gu JY Cancer Invest; 2020 Jan; 38(1):52-60. PubMed ID: 31873045 [TBL] [Abstract][Full Text] [Related]
80. Poor clinical outcome in metastatic melanoma is associated with a microRNA-modulated immunosuppressive tumor microenvironment. Jorge NAN; Cruz JGV; Pretti MAM; Bonamino MH; Possik PA; Boroni M J Transl Med; 2020 Feb; 18(1):56. PubMed ID: 32024530 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]