These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31534269)

  • 1. Computational Investigation of a Boundary-Layer Ingesting Propulsion System for the Common Research Model.
    Blumenthal BT; Elmiligui AA; Geiselhart KA; Campbell RL; Maughmer MD; Schmitz S
    J Aircr; 2019 Apr; 55(3):1141-1153. PubMed ID: 31534269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feather roughness reduces flow separation during low Reynolds number glides of swifts.
    van Bokhorst E; de Kat R; Elsinga GE; Lentink D
    J Exp Biol; 2015 Oct; 218(Pt 20):3179-91. PubMed ID: 26347563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
    Levy DE; Seifert A
    J Theor Biol; 2010 Oct; 266(4):691-702. PubMed ID: 20673771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axial propulsion with flapping and rotating wings, a comparison of potential efficiency.
    Kroninger CM
    Bioinspir Biomim; 2018 Apr; 13(3):036012. PubMed ID: 29461251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thrust generation and propulsive efficiency in dolphin-like swimming propulsion.
    Guo J; Zhang W; Han P; Fish FE; Dong H
    Bioinspir Biomim; 2023 Jul; 18(5):. PubMed ID: 37414002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of body roll amplitude and arm rotation speed on propulsion of arm amputee swimmers.
    Lecrivain G; Payton C; Slaouti A; Kennedy I
    J Biomech; 2010 Apr; 43(6):1111-7. PubMed ID: 20106479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing.
    Brandt J; Doig G; Tsafnat N
    PLoS One; 2015; 10(5):e0124824. PubMed ID: 25954946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces.
    Wang C; Xu F; Hsu MC; Krishnamurthy A
    Comput Aided Geom Des; 2017; 52-53():190-204. PubMed ID: 29051678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A predictive model of the drag coefficient for a revolving wing at low Reynolds number.
    Oh S; Choi H
    Bioinspir Biomim; 2018 Aug; 13(5):054001. PubMed ID: 30039801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Edge Cooling of a Fuel Cell during Aerial Missions by Ambient Air.
    Zakhvatkin L; Schechter A; Buri E; Avrahami I
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fuselage boundary-layer refraction of fan tones radiated from an installed turbofan aero-engine.
    Gaffney J; McAlpine A; Kingan MJ
    J Acoust Soc Am; 2017 Mar; 141(3):1653. PubMed ID: 28372073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigation of the early flight phase in ski-jumping.
    Gardan N; Schneider A; Polidori G; Trenchard H; Seigneur JM; Beaumont F; Fourchet F; Taiar R
    J Biomech; 2017 Jul; 59():29-34. PubMed ID: 28558914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.
    Bass K; Boc S; Hindle M; Dodson K; Longest W
    J Aerosol Med Pulm Drug Deliv; 2019 Jun; 32(3):132-148. PubMed ID: 30556777
    [No Abstract]   [Full Text] [Related]  

  • 15. Enabling the environmentally clean air transportation of the future: a vision of computational fluid dynamics in 2030.
    Slotnick JP; Khodadoust A; Alonso JJ; Darmofal DL; Gropp WD; Lurie EA; Mavriplis DJ; Venkatakrishnan V
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2022):20130317. PubMed ID: 25024413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical investigation of low-noise airfoils inspired by the down coat of owls.
    Bodling A; Sharma A
    Bioinspir Biomim; 2018 Dec; 14(1):016013. PubMed ID: 30523914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
    Tay WB; van Oudheusden BW; Bijl H
    Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variational Generation of Prismatic Boundary-Layer Meshes for Biomedical Computing.
    Dyedov V; Einstein D; Jiao X; Kuprat A; Carson J; Pin FD
    Int J Numer Methods Eng; 2009 Aug; 79(8):907-945. PubMed ID: 20161102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of vehicle configuration on the performance of a submersible pulsed-jet vehicle at intermediate Reynolds number.
    Nichols JT; Krueger PS
    Bioinspir Biomim; 2012 Sep; 7(3):036010. PubMed ID: 22549087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.