BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31534653)

  • 1. Recent development of leucyl-tRNA synthetase inhibitors as antimicrobial agents.
    Zhang P; Ma S
    Medchemcomm; 2019 Aug; 10(8):1329-1341. PubMed ID: 31534653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-transfer editing by a eukaryotic leucyl-tRNA synthetase resistant to the broad-spectrum drug AN2690.
    Zhou XL; Tan M; Wang M; Chen X; Wang ED
    Biochem J; 2010 Sep; 430(2):325-33. PubMed ID: 20557293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the characteristics of leucyl-tRNA synthetase (LeuRS) inhibitor AN3365 in combination with different antibiotic classes.
    Monteferrante CG; Jirgensons A; Varik V; Hauryliuk V; Goessens WH; Hays JP
    Eur J Clin Microbiol Infect Dis; 2016 Nov; 35(11):1857-1864. PubMed ID: 27506217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of the human and fungal cytosolic Leucyl-tRNA synthetase editing domains: A structural basis for the rational design of antifungal benzoxaboroles.
    Seiradake E; Mao W; Hernandez V; Baker SJ; Plattner JJ; Alley MR; Cusack S
    J Mol Biol; 2009 Jul; 390(2):196-207. PubMed ID: 19426743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: An up-to-date review.
    Bouz G; Zitko J
    Bioorg Chem; 2021 May; 110():104806. PubMed ID: 33799176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling and molecular dynamics simulation study of archaeal leucyl-tRNA synthetase in complex with different mischarged tRNA in editing conformation.
    Rayevsky AV; Sharifi M; Tukalo MA
    J Mol Graph Model; 2017 Sep; 76():289-295. PubMed ID: 28743072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aminoacyl-tRNA synthetase inhibitors as antimicrobial agents: a patent review from 2006 till present.
    Gadakh B; Van Aerschot A
    Expert Opin Ther Pat; 2012 Dec; 22(12):1453-65. PubMed ID: 23062029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site.
    Rock FL; Mao W; Yaremchuk A; Tukalo M; Crépin T; Zhou H; Zhang YK; Hernandez V; Akama T; Baker SJ; Plattner JJ; Shapiro L; Martinis SA; Benkovic SJ; Cusack S; Alley MR
    Science; 2007 Jun; 316(5832):1759-61. PubMed ID: 17588934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the Resistance Mechanism of a Benzoxaborole Inhibitor Reveals Insight into the Leucyl-tRNA Synthetase Editing Mechanism.
    Zhao H; Palencia A; Seiradake E; Ghaemi Z; Cusack S; Luthey-Schulten Z; Martinis S
    ACS Chem Biol; 2015 Oct; 10(10):2277-85. PubMed ID: 26172575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional association between three archaeal aminoacyl-tRNA synthetases.
    Praetorius-Ibba M; Hausmann CD; Paras M; Rogers TE; Ibba M
    J Biol Chem; 2007 Feb; 282(6):3680-7. PubMed ID: 17158871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leishmania donovani Parasites Are Inhibited by the Benzoxaborole AN2690 Targeting Leucyl-tRNA Synthetase.
    Manhas R; Tandon S; Sen SS; Tiwari N; Munde M; Madhubala R
    Antimicrob Agents Chemother; 2018 Sep; 62(9):. PubMed ID: 29941647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminoacyl-tRNA synthetase (AARS) as an attractive drug target in neglected tropical trypanosomatid diseases-Leishmaniasis, Human African Trypanosomiasis and Chagas disease.
    Kushwaha V; Capalash N
    Mol Biochem Parasitol; 2022 Sep; 251():111510. PubMed ID: 35988745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Duplication of leucyl-tRNA synthetase in an archaeal extremophile may play a role in adaptation to variable environmental conditions.
    Weitzel CS; Li L; Zhang C; Eilts KK; Bretz NM; Gatten AL; Whitaker RJ; Martinis SA
    J Biol Chem; 2020 Apr; 295(14):4563-4576. PubMed ID: 32102848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid phenylthiazole and 1,3,5-triazine target cytosolic leucyl-tRNA synthetase for antifungal action as revealed by molecular docking studies.
    Singh UP; Bhat HR; Gahtori P; Singh RK
    In Silico Pharmacol; 2013; 1():3. PubMed ID: 25505648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aminoacyl-tRNA synthetases as drug targets.
    Lukarska M; Palencia A
    Enzymes; 2020; 48():321-350. PubMed ID: 33837708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and structure-activity studies of novel anhydrohexitol-based Leucyl-tRNA synthetase inhibitors.
    De Ruysscher D; Pang L; Lenders SMG; Cappoen D; Cos P; Rozenski J; Strelkov SV; Weeks SD; Van Aerschot A
    Eur J Med Chem; 2021 Feb; 211():113021. PubMed ID: 33248851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development.
    Dewan V; Reader J; Forsyth KM
    Top Curr Chem; 2014; 344():293-329. PubMed ID: 23666077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The physiological target for LeuRS translational quality control is norvaline.
    Cvetesic N; Palencia A; Halasz I; Cusack S; Gruic-Sovulj I
    EMBO J; 2014 Aug; 33(15):1639-53. PubMed ID: 24935946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase.
    Hu QH; Liu RJ; Fang ZP; Zhang J; Ding YY; Tan M; Wang M; Pan W; Zhou HC; Wang ED
    Sci Rep; 2013; 3():2475. PubMed ID: 23959225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.