These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31535111)

  • 21. Polyoxometalate-Supported Bis(2,2'-bipyridine)mono(aqua)nickel(II) Coordination Complex: an Efficient Electrocatalyst for Water Oxidation.
    Singh C; Mukhopadhyay S; Das SK
    Inorg Chem; 2018 Jun; 57(11):6479-6490. PubMed ID: 29762026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation.
    Wu L; Eberhart M; Nayak A; Brennaman MK; Shan B; Meyer TJ
    J Am Chem Soc; 2018 Nov; 140(44):15062-15069. PubMed ID: 30371065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New supramolecular structural motif coupling a ruthenium(II) polyazine light absorber to a rhodium(I) center.
    Zhou R; Sedai B; Manbeck GF; Brewer KJ
    Inorg Chem; 2013 Dec; 52(23):13314-24. PubMed ID: 24245990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unravelling the pH-dependence of a molecular photocatalytic system for hydrogen production.
    Reynal A; Pastor E; Gross MA; Selim S; Reisner E; Durrant JR
    Chem Sci; 2015 Aug; 6(8):4855-4859. PubMed ID: 28717491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-induced charge separation and photocatalytic hydrogen evolution from water using Ru(II)Pt(II)-based molecular devices: effects of introducing additional donor and/or acceptor sites.
    Ajayakumar G; Kobayashi M; Masaoka S; Sakai K
    Dalton Trans; 2011 Apr; 40(15):3955-66. PubMed ID: 21416079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ligand Noninnocence in Nickel Porphyrins: Nickel Isobacteriochlorin Formation under Hydrogen Evolution Conditions.
    Maher AG; Liu M; Nocera DG
    Inorg Chem; 2019 Jun; 58(12):7958-7968. PubMed ID: 31145599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photocatalytic CO
    Shimoda T; Morishima T; Kodama K; Hirose T; Polyansky DE; Manbeck GF; Muckerman JT; Fujita E
    Inorg Chem; 2018 May; 57(9):5486-5498. PubMed ID: 29696969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cobalt, nickel, and iron complexes of 8-hydroxyquinoline-di(2-picolyl)amine for light-driven hydrogen evolution.
    Carmo Dos Santos NA; Natali M; Badetti E; Wurst K; Licini G; Zonta C
    Dalton Trans; 2017 Dec; 46(47):16455-16464. PubMed ID: 29143834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photo- and electrocatalytic H2 production by new first-row transition-metal complexes based on an aminopyridine pentadentate ligand.
    Call A; Codolà Z; Acuña-Parés F; Lloret-Fillol J
    Chemistry; 2014 May; 20(20):6171-83. PubMed ID: 24692261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Devising a Polyoxometalate-Based Functional Material as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction.
    Singh C; Haldar A; Basu O; Das SK
    Inorg Chem; 2021 Jul; 60(14):10302-10314. PubMed ID: 34185987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adjacent- versus remote-site electron injection in TiO2 surfaces modified with binuclear ruthenium complexes.
    Gholamkhass B; Koike K; Negishi N; Hori H; Sano T; Takeuchi K
    Inorg Chem; 2003 May; 42(9):2919-32. PubMed ID: 12716184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Axial ligand-induced high electrocatalytic hydrogen evolution activity of molecular cobaloximes in homo- and heterogeneous medium.
    Yadav JK; Singh B; Mishra A; Pal SK; Singh N; Lama P; Indra A; Kumar K
    Dalton Trans; 2024 Oct; 53(40):16747-16758. PubMed ID: 39347949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of the capping agent and nanocrystal size in photoinduced hydrogen evolution using CdTe/CdS quantum dot sensitizers.
    Benazzi E; Coni VC; Boni M; Mazzaro R; Morandi V; Natali M
    Dalton Trans; 2020 Aug; 49(29):10212-10223. PubMed ID: 32666964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic details for cobalt catalyzed photochemical hydrogen production in aqueous solution: efficiencies of the photochemical and non-photochemical steps.
    Shan B; Baine T; Ma XA; Zhao X; Schmehl RH
    Inorg Chem; 2013 May; 52(9):4853-9. PubMed ID: 23642176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photochemical H
    Stratakes BM; Wells KA; Kurtz DA; Castellano FN; Miller AJM
    J Am Chem Soc; 2021 Dec; 143(50):21388-21401. PubMed ID: 34878278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Re(bpy)(CO)
    Waki M; Yamanaka KI; Shirai S; Maegawa Y; Goto Y; Yamada Y; Inagaki S
    Chemistry; 2018 Mar; 24(15):3846-3853. PubMed ID: 29333628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visible-light hydrogen generation using as photocatalysts layered titanates incorporating in the intergallery space ruthenium tris(bipyridyl) and methyl viologen.
    Sastre F; Bouizi Y; Fornés V; Garcia H
    J Colloid Interface Sci; 2010 Jun; 346(1):172-7. PubMed ID: 20356602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoredox vs. energy transfer in a Ru(II)-Fe(II) supramolecular complex built with an heteroditopic bipyridine-terpyridine ligand.
    Lombard J; Leprêtre JC; Chauvin J; Collomb MN; Deronzier A
    Dalton Trans; 2008 Feb; (5):658-66. PubMed ID: 18217122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent findings and future directions in photosynthetic hydrogen evolution using polypyridine cobalt complexes.
    Droghetti F; Lucarini F; Molinari A; Ruggi A; Natali M
    Dalton Trans; 2022 Jul; 51(28):10658-10673. PubMed ID: 35475511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photochemical, electrochemical, and photoelectrochemical water oxidation catalyzed by water-soluble mononuclear ruthenium complexes.
    Li TT; Zhao WL; Chen Y; Li FM; Wang CJ; Tian YH; Fu WF
    Chemistry; 2014 Oct; 20(43):13957-64. PubMed ID: 25205065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.