BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 31535658)

  • 1. Bioinformatic identification of key candidate genes and pathways in axon regeneration after spinal cord injury in zebrafish.
    Li JH; Shi ZJ; Li Y; Pan B; Yuan SY; Shi LL; Hao Y; Cao FJ; Feng SQ
    Neural Regen Res; 2020 Jan; 15(1):103-111. PubMed ID: 31535658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Key Genes and Pathways Involved in the Heterogeneity of Intrinsic Growth Ability Between Neurons After Spinal Cord Injury in Adult Zebrafish.
    Fu H; Han G; Li H; Liang X; Hu D; Zhang L; Tang P
    Neurochem Res; 2019 Sep; 44(9):2057-2067. PubMed ID: 31325155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of key genes involved in recovery from spinal cord injury in adult zebrafish.
    Shen WY; Fu XH; Cai J; Li WC; Fan BY; Pang YL; Zhao CX; Abula M; Kong XH; Yao X; Feng SQ
    Neural Regen Res; 2022 Jun; 17(6):1334-1342. PubMed ID: 34782579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Regeneration and Hub Genes and Pathways at Different Time Points after Spinal Cord Injury.
    Fang S; Zhong L; Wang AQ; Zhang H; Yin ZS
    Mol Neurobiol; 2021 Jun; 58(6):2643-2662. PubMed ID: 33484404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatics analyses of differentially expressed genes associated with spinal cord injury: A microarray-based analysis in a mouse model.
    Guo L; Lv J; Huang YF; Hao DJ; Liu JJ
    Neural Regen Res; 2019 Jul; 14(7):1262-1270. PubMed ID: 30804258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic analysis of spinal cord regeneration after injury in
    Wang D; Zhao M; Tang X; Gao M; Liu W; Xiang M; Ruan J; Chen J; Long B; Li J
    Neural Regen Res; 2023 Dec; 18(12):2743-2750. PubMed ID: 37449639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell cycle and complement inhibitors may be specific for treatment of spinal cord injury in aged and young mice: Transcriptomic analyses.
    Hao M; Ji XR; Chen H; Zhang W; Zhang LC; Zhang LH; Tang PF; Lu N
    Neural Regen Res; 2018 Mar; 13(3):518-527. PubMed ID: 29623939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.
    Strand NS; Hoi KK; Phan TMT; Ray CA; Berndt JD; Moon RT
    Biochem Biophys Res Commun; 2016 Sep; 477(4):952-956. PubMed ID: 27387232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Syntenin-a promotes spinal cord regeneration following injury in adult zebrafish.
    Yu Y; Schachner M
    Eur J Neurosci; 2013 Jul; 38(2):2280-9. PubMed ID: 23607754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting the Molecular Signature of Spinal Cord Regeneration in the Axolotl Model.
    Demircan T
    Cureus; 2020 Feb; 12(2):e7014. PubMed ID: 32211250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome wide expression profiling during spinal cord regeneration identifies comprehensive cellular responses in zebrafish.
    Hui SP; Sengupta D; Lee SG; Sen T; Kundu S; Mathavan S; Ghosh S
    PLoS One; 2014; 9(1):e84212. PubMed ID: 24465396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury.
    Zou Y; Stagi M; Wang X; Yigitkanli K; Siegel CS; Nakatsu F; Cafferty WB; Strittmatter SM
    J Neurosci; 2015 Jul; 35(29):10429-39. PubMed ID: 26203138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal DNA Methylation in Thoracic Spinal Cord Tissue Following Transection Injury.
    Shi GD; Zhang XL; Cheng X; Wang X; Fan BY; Liu S; Hao Y; Wei ZJ; Zhou XH; Feng SQ
    Med Sci Monit; 2018 Dec; 24():8878-8890. PubMed ID: 30531681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MASH1/Ascl1a leads to GAP43 expression and axon regeneration in the adult CNS.
    Williams RR; Venkatesh I; Pearse DD; Udvadia AJ; Bunge MB
    PLoS One; 2015; 10(3):e0118918. PubMed ID: 25751153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys.
    Herman PE; Papatheodorou A; Bryant SA; Waterbury CKM; Herdy JR; Arcese AA; Buxbaum JD; Smith JJ; Morgan JR; Bloom O
    Sci Rep; 2018 Jan; 8(1):742. PubMed ID: 29335507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury.
    Briona LK; Poulain FE; Mosimann C; Dorsky RI
    Dev Biol; 2015 Jul; 403(1):15-21. PubMed ID: 25888075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury.
    Li P; Teng ZQ; Liu CM
    Neural Plast; 2016; 2016():1279051. PubMed ID: 27818801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data.
    Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G
    Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axonal regeneration in zebrafish spinal cord.
    Ghosh S; Hui SP
    Regeneration (Oxf); 2018 Mar; 5(1):43-60. PubMed ID: 29721326
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.