These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 31535755)
1. Systematic Consideration of Parameter Uncertainty and Variability in Probabilistic Species Sensitivity Distributions. Wigger H; Kawecki D; Nowack B; Adam V Integr Environ Assess Manag; 2020 Mar; 16(2):211-222. PubMed ID: 31535755 [TBL] [Abstract][Full Text] [Related]
2. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717 [TBL] [Abstract][Full Text] [Related]
3. Comparison of species sensitivity distribution modeling approaches for environmental risk assessment of nanomaterials - A case study for silver and titanium dioxide representative materials. Sørensen SN; Wigger H; Zabeo A; Semenzin E; Hristozov D; Nowack B; Spurgeon DJ; Baun A Aquat Toxicol; 2020 Aug; 225():105543. PubMed ID: 32585540 [TBL] [Abstract][Full Text] [Related]
4. A probabilistic method for species sensitivity distributions taking into account the inherent uncertainty and variability of effects to estimate environmental risk. Gottschalk F; Nowack B Integr Environ Assess Manag; 2013 Jan; 9(1):79-86. PubMed ID: 22745057 [TBL] [Abstract][Full Text] [Related]
5. A Chronic Aquatic Hazard Assessment for the Perfume Raw Material Octahydro-tetramethyl-naphthalenyl-ethanone. Lapczynski A; Belanger SE; Connors K; Bozich J Environ Toxicol Chem; 2024 Jun; 43(6):1378-1389. PubMed ID: 38661477 [TBL] [Abstract][Full Text] [Related]
6. Species Sensitivity Distribution estimation from uncertain (QSAR-based) effects data. Aldenberg T; Rorije E Altern Lab Anim; 2013 Mar; 41(1):19-31. PubMed ID: 23614542 [TBL] [Abstract][Full Text] [Related]
7. Advantages of model averaging of species sensitivity distributions used for regulating produced water discharges. Binet MT; Golding LA; Adams MS; Robertson T; Elsdon TS Integr Environ Assess Manag; 2024 Mar; 20(2):498-517. PubMed ID: 37466036 [TBL] [Abstract][Full Text] [Related]
8. Toward an ecotoxicological risk assessment of microplastics: Comparison of available hazard and exposure data in freshwaters. Adam V; Yang T; Nowack B Environ Toxicol Chem; 2019 Feb; 38(2):436-447. PubMed ID: 30488983 [TBL] [Abstract][Full Text] [Related]
9. Future needs and recommendations in the development of species sensitivity distributions: Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures. Belanger S; Barron M; Craig P; Dyer S; Galay-Burgos M; Hamer M; Marshall S; Posthuma L; Raimondo S; Whitehouse P Integr Environ Assess Manag; 2017 Jul; 13(4):664-674. PubMed ID: 27531323 [TBL] [Abstract][Full Text] [Related]
10. Quantifying the precision of ecological risk: Conventional assessment factor method vs. species sensitivity distribution method. Sorgog K; Kamo M Ecotoxicol Environ Saf; 2019 Nov; 183():109494. PubMed ID: 31376805 [TBL] [Abstract][Full Text] [Related]
11. Environmental risk assessment of engineered nano-SiO Wang Y; Nowack B Environ Toxicol Chem; 2018 May; 37(5):1387-1395. PubMed ID: 29315795 [TBL] [Abstract][Full Text] [Related]
12. Effects of data manipulation and statistical methods on species sensitivity distributions. Duboudin C; Ciffroy P; Magaud H Environ Toxicol Chem; 2004 Feb; 23(2):489-99. PubMed ID: 14982398 [TBL] [Abstract][Full Text] [Related]
13. Species sensitivity distribution evaluation for chronic nickel toxicity to marine organisms. DeForest DK; Schlekat CE Integr Environ Assess Manag; 2013 Oct; 9(4):580-9. PubMed ID: 23553986 [TBL] [Abstract][Full Text] [Related]
14. Hierarchical modelling of species sensitivity distribution: development and application to the case of diatoms exposed to several herbicides. Kon Kam King G; Larras F; Charles S; Delignette-Muller ML Ecotoxicol Environ Saf; 2015 Apr; 114():212-21. PubMed ID: 25656423 [TBL] [Abstract][Full Text] [Related]
15. Development of a Bayesian network for probabilistic risk assessment of pesticides. Mentzel S; Grung M; Tollefsen KE; Stenrød M; Petersen K; Moe SJ Integr Environ Assess Manag; 2022 Jun; 18(4):1072-1087. PubMed ID: 34618406 [TBL] [Abstract][Full Text] [Related]
16. Development of predicted no effect concentration (PNEC) for TCS to terrestrial species. Wang X; Zhang C; Liu Z; Wang W; Chen L Chemosphere; 2015 Nov; 139():428-33. PubMed ID: 26233766 [TBL] [Abstract][Full Text] [Related]
17. Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Capdevielle M; Van Egmond R; Whelan M; Versteeg D; Hofmann-Kamensky M; Inauen J; Cunningham V; Woltering D Integr Environ Assess Manag; 2008 Jan; 4(1):15-23. PubMed ID: 18260205 [TBL] [Abstract][Full Text] [Related]
18. Revisiting assessment factors for species sensitivity distributions as a function of sample size and variation in species sensitivity. Kamo M; Hayashi TI; Iwasaki Y Ecotoxicol Environ Saf; 2022 Nov; 246():114170. PubMed ID: 36242822 [TBL] [Abstract][Full Text] [Related]
19. Correcting for Phylogenetic Autocorrelation in Species Sensitivity Distributions. Moore DR; Priest CD; Galic N; Brain RA; Rodney SI Integr Environ Assess Manag; 2020 Jan; 16(1):53-65. PubMed ID: 31433110 [TBL] [Abstract][Full Text] [Related]
20. Development and application of the SSD approach in scientific case studies for ecological risk assessment. Del Signore A; Hendriks AJ; Lenders HJ; Leuven RS; Breure AM Environ Toxicol Chem; 2016 Sep; 35(9):2149-61. PubMed ID: 27144499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]